scholarly journals Predicting Behavioral Deficits in Pediatric Traumatic Brain Injury Through Uncinate Fasciculus Integrity

2011 ◽  
Vol 17 (4) ◽  
pp. 663-673 ◽  
Author(s):  
Chad P. Johnson ◽  
Jenifer Juranek ◽  
Larry A. Kramer ◽  
Mary R. Prasad ◽  
Paul R. Swank ◽  
...  

AbstractBehavioral dysregulation is a common and detrimental consequence of traumatic brain injury (TBI) in children that contributes to poor academic achievement and deficits in social development. Unfortunately, behavioral dysregulation is difficult to predict from either injury severity or early neuropsychological evaluation. The uncinate fasciculus (UF) connects orbitofrontal and anterior temporal lobes, which are commonly implicated in emotional and behavioral regulation. Using probabilistic diffusion tensor tractography (DTT), we examined the relationship between the integrity of the UF 3 months post-injury and ratings of executive functions 12 months post-injury in children with moderate to severe TBI and a comparison group with orthopedic injuries. As expected, fractional anisotropy of the UF was lower in the TBI group relative to the orthopedic injury group. DTT metrics from the UF served as a biomarker and predicted ratings of emotional and behavior regulation, but not metacognition. In contrast, the Glasgow Coma Scale score was not related to either UF integrity or to executive function outcomes. Neuroanatomical biomarkers like the uncinate fasciculus may allow for early identification of behavioral problems and allow for investigation into the relationship of frontotemporal networks to brain-behavior relationships. (JINS, 2011, 17, 663–673)

Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012222
Author(s):  
Emily L Dennis ◽  
Karen Caeyenberghs ◽  
Kristen R Hoskinson ◽  
Tricia L Merkley ◽  
Stacy J Suskauer ◽  
...  

Objective:Our study addressed aims: (1) test the hypothesis that moderate-severe TBI in pediatric patients is associated with widespread white matter (WM) disruption; (2) test the hypothesis that age and sex impact WM organization after injury; and (3) examine associations between WM organization and neurobehavioral outcomes.Methods:Data from ten previously enrolled, existing cohorts recruited from local hospitals and clinics were shared with the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric msTBI working group. We conducted a coordinated analysis of diffusion MRI (dMRI) data using the ENIGMA dMRI processing pipeline.Results:Five hundred and seven children and adolescents (244 with complicated mild to severe TBI [msTBI] and 263 controls) were included. Patients were clustered into three post-injury intervals: acute/subacute - <2 months, post-acute - 2-6 months, chronic - 6+ months. Outcomes were dMRI metrics and post-injury behavioral problems as indexed by the Child Behavior Checklist (CBCL). Our analyses revealed altered WM diffusion metrics across multiple tracts and all post-injury intervals (effect sizes ranging between d=-0.5 to -1.3). Injury severity is a significant contributor to the extent of WM alterations but explained less variance in dMRI measures with increasing time post-injury. We observed a sex-by-group interaction: females with TBI had significantly lower fractional anisotropy in the uncinate fasciculus than controls (𝞫=0.043), which coincided with more parent-reported behavioral problems (𝞫=-0.0027).Conclusions:WM disruption after msTBI is widespread, persistent, and influenced by demographic and clinical variables. Future work will test techniques for harmonizing neurocognitive data, enabling more advanced analyses to identify symptom clusters and clinically-meaningful patient subtypes.


CNS Spectrums ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 178-179
Author(s):  
John L. Sherman ◽  
Laurence J. Adams ◽  
Christen F. Kutz ◽  
Deborah York ◽  
Mitchell S. Szymczak

AbstractTraumatic brain injury (TBI) is a complex phenomenon affecting multiple areas of the brain in multiple ways. Both right and left hemispheres are affected as well as supratentorial and infratentorial compartments. These multifocal injuries are caused by many factors including acute mechanical injury, focal intracranial hemorrhage, blunt and rotational forces, epidural and subdural hematoma, hypoxemia, hypotension, edema, axonal damage, neuronal death, gliosis and blood brain barrier disruption. Clinicians and patients benefit by precise information about the neuroanatomical areas that are affected macroscopically, microscopically and biochemically in an individual patient.Standard imaging studies are frequently negative or grossly underestimate the severity of TBI and may exacerbate and prolong patient suffering with an imaging result of “no significant abnormality”. Specifically, sophisticated imaging tools have been developed which reveal significant damage to the brain structure including atrophy, MRI spectroscopy showing variations in neuronal metabolite N-acetyl-aspartate, elevations of membrane related Choline, and the glial metabolite myo-inositol is often observed to be increased post injury. In addition, susceptibility weighted imaging (SWI) has been shown to be more reliable for detecting microbleeds versus calcifications.We have selected two TBI patients with diffuse traumatic brain injury.The first patient is a 43-year-old male who suffered severe traumatic brain injury from a motorcycle accident in 2016. Following the accident, the patient was diagnosed with seizures, major depression, and intermittent explosive disorder. He has attempted suicide and has neurobehavioral disinhibition including severe anger, agitation and irritability. He denies psychiatric history prior to TBI and has negative family history. Following the TBI, he became physically aggressive and assaultive in public with minimal provocation. He denies symptoms of thought disorder and mania. He is negative for symptoms of  cognitive decline or encephalopathy.The second patient is a 49-year-old male who suffered at least 3 concussive blasts in the Army and a parachute injury. Following the last accident, the patient was diagnosed with major depressive disorder, panic disorder, PTSD and generalized anxiety disorder. He denies any psychiatric history prior to TBI including negative family history of psychiatric illness. In addition, he now suffers from nervousness, irritability, anger, emotional lability and concurrent concentration issues, problems completing tasks and alterations in memory.Both patients underwent 1.5T multiparametric MRI using standard T2, FLAIR, DWI and T1 sequences, and specialized sequences including susceptibility weighted (SWAN/SWI), 3D FLAIR, single voxel MRI spectroscopy (MRS), diffusion tensor imaging (DTI), arterial spin labeling perfusion (ASL) and volumetric MRI (NeuroQuant). Importantly, this exam can be performed in 30–45 minutes and requires no injections other than gadolinium in some patients. We will discuss the insights derived from the MRI which detail the injured areas, validate the severity of the brain damage, and provide insight into the psychological, motivational and physical disabilities that afflict these patients. It is our expectation that this kind of imaging study will grow in value as we link specific patterns of injury to specific symptoms and syndromes resulting in more targeted therapies in the future.


2011 ◽  
Vol 17 (2) ◽  
pp. 317-326 ◽  
Author(s):  
Stacey E. Woodrome ◽  
Keith Owen Yeates ◽  
H. Gerry Taylor ◽  
Jerome Rusin ◽  
Barbara Bangert ◽  
...  

AbstractThis study examined whether children's coping strategies are related to post-concussive symptoms following mild traumatic brain injury (TBI) versus orthopedic injury (OI). Participants were 8- to 15-year-old children with mild TBI (n = 167) or OI (n = 84). They rated their current preferred coping strategies and post-injury symptoms at 2 weeks (baseline) and 1, 3, and 12 months post-injury. Children's reported use of coping strategies did not vary significantly over time, so their baseline coping ratings were examined as predictors of post-concussive symptoms across time. Self-ratings of symptoms were positively related to emotion-focused strategies and negatively related to problem-focused engagement after both mild TBI and OI. Higher problem-focused disengagement predicted larger group differences in children's ratings of symptoms, suggesting that problem-focused disengagement moderates the effects of mild TBI. Coping strategies collectively accounted for approximately 10–15% of the variance in children's post-concussive symptoms over time. The findings suggest that coping may play an important role in accounting for children's perceptions of post-concussive symptoms after mild TBI. (JINS, 2011, 17, 317–326)


2018 ◽  
Vol 20 (5) ◽  
pp. 566-576 ◽  
Author(s):  
Karin Reuter-Rice ◽  
Michael Regier ◽  
Ellen Bennett ◽  
Daniel Laskowitz

Background: Pediatric traumatic brain injury (TBI) is a leading cause of death and disability. Polymorphisms in the apolipoprotein E ( APOE) gene have been linked to cerebral vasospasm (CV) and poor outcomes in adults with TBI, yet these associations remain poorly defined in children. Objective: We examined the effect of the relationship between APOE polymorphisms and CV on functional outcomes in children with a TBI. Method: This prospective, descriptive study examined 60 children (aged 10 days to 15 years) with a TBI. Data included demographic information, genetic sampling for the APOE gene and single-nucleotide polymorphisms (SNPs; rs405509, rs429358, rs7412), and daily transcranial Doppler ultrasounds to evaluate for CV. We examined Glasgow Outcome Scale–Extended Pediatrics (GOS-E Peds) scores at the time of discharge and 4–6 weeks after discharge. Results: More than half (56.7%) of the 60 children ( Mage = 5.9 years) were male. Twenty-six participants (43.3%) experienced an occurrence of CV. There were significant differences in injury mechanism (unadjusted p = .048) and age (unadjusted p = .02) between those with and without CV. Also, the noncoding promoter SNP rs405509 T/T, when considered with injury severity, appeared to modify the relationship of APOE genotype to CV. The relationship between APOE and CV had no significant effect on GOS-E Peds scores. Conclusion: Injury severity and the APOE noncoding promoter SNP rs405509 may modify the relationship between APOE and CV in children with TBI. More studies are needed to understand the role of APOE polymorphisms in outcomes in children with TBI.


2020 ◽  
Vol 9 (6) ◽  
pp. 2007
Author(s):  
Juan Arango-Lasprilla ◽  
Marina Zeldovich ◽  
Laiene Olabarrieta-Landa ◽  
Marit Forslund ◽  
Silvia Núñez-Fernández ◽  
...  

Sustaining a traumatic brain injury (TBI) often affects the individual’s ability to work, reducing employment rates post-injury across all severities of TBI. The objective of this multi-country study was to assess the most relevant early predictors of employment status in individuals after TBI at one-year post-injury in European countries. Using a prospective longitudinal non-randomized observational cohort (The Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) project), data was collected between December 2014–2019 from 63 trauma centers in 18 European countries. The 1015 individuals who took part in this study were potential labor market participants, admitted to a hospital and enrolled within 24 h of injury with a clinical TBI diagnosis and indication for a computed tomography (CT) scan, and followed up at one year. Results from a binomial logistic regression showed that older age, status of part-time employment or unemployment at time of injury, premorbid psychiatric problems, and higher injury severity (as measured with higher Injury severity score (ISS), lower Glasgow Coma Scale (GCS), and longer length of stay (LOS) in hospital) were associated with higher unemployment probability at one-year after injury. The study strengthens evidence for age, employment at time of injury, premorbid psychiatric problems, ISS, GCS, and LOS as important predictors for employment status one-year post-TBI across Europe.


2019 ◽  
Vol 13 ◽  
pp. 117906951985862 ◽  
Author(s):  
Wouter S Hoogenboom ◽  
Todd G Rubin ◽  
Kenny Ye ◽  
Min-Hui Cui ◽  
Kelsey C Branch ◽  
...  

Mild traumatic brain injury (mTBI), also known as concussion, is a serious public health challenge. Although most patients recover, a substantial minority suffers chronic disability. The mechanisms underlying mTBI-related detrimental effects remain poorly understood. Although animal models contribute valuable preclinical information and improve our understanding of the underlying mechanisms following mTBI, only few studies have used diffusion tensor imaging (DTI) to study the evolution of axonal injury following mTBI in rodents. It is known that DTI shows changes after human concussion and the role of delineating imaging findings in animals is therefore to facilitate understanding of related mechanisms. In this work, we used a rodent model of mTBI to investigate longitudinal indices of axonal injury. We present the results of 45 animals that received magnetic resonance imaging (MRI) at multiple time points over a 2-week period following concussive or sham injury yielding 109 serial observations. Overall, the evolution of DTI metrics following concussive or sham injury differed by group. Diffusion tensor imaging changes within the white matter were most noticeable 1 week following injury and returned to baseline values after 2 weeks. More specifically, we observed increased fractional anisotropy in combination with decreased radial diffusivity and mean diffusivity, in the absence of changes in axial diffusivity, within the white matter of the genu corpus callosum at 1 week post-injury. Our study shows that DTI can detect microstructural white matter changes in the absence of gross abnormalities as indicated by visual screening of anatomical MRI and hematoxylin and eosin (H&E)-stained sections in a clinically relevant animal model of mTBI. Whereas additional histopathologic characterization is required to better understand the neurobiological correlates of DTI measures, our findings highlight the evolving nature of the brain’s response to injury following concussion.


2018 ◽  
Vol 89 (10) ◽  
pp. A42.1-A42
Author(s):  
Graham Neil SN ◽  
Jolly Amy E ◽  
Bourke Niall J ◽  
Scott Gregory ◽  
Cole James H ◽  
...  

BackgroundDementia rates are elevated after traumatic brain injury (TBI) and a subgroup develops chronic traumatic encephalopathy. Post-traumatic neurodegeneration can be measured by brain atrophy rates derived from neuroimaging, but it is unclear how atrophy relates to the initial pattern of injury.ObjectivesTo investigate the relationship between baseline TBI patterns and subsequent neurodegeneration measured by progressive brain atrophy.Methods55 patients after moderate-severe TBI (mean 3 years post-injury) and 20 controls underwent longitudinal MRI. Brain atrophy was quantified using the Jacobian determinant defined from volumetric T1 scans approximately one year apart. Diffuse axonal injury was measured using diffusion tensor imaging and focal injuries defined from T1 and FLAIR. Neuropsychological assessment was performed.ResultsAbnormal progressive brain atrophy was seen after TBI (~1.8%/year in white matter). This was accompanied by widespread reductions in fractional anisotropy, in keeping with the presence of diffuse axonal injury. There was a strong negative correlation between FA and brain atrophy, whereby areas of greater white matter damage showed greater atrophy over time.ConclusionsThe results show a strong relationship between the location of diffuse axonal injury and subsequent neurodegeneration. This suggests that TBI triggers progressive neurodegeneration through the long-lasting effects of diffuse axonal injury.


2020 ◽  
Vol 35 (6) ◽  
pp. 918-918
Author(s):  
Sullivan K ◽  
Hennessy M

Abstract Objective Little is known about the traumatic brain injury (TBI) outcomes for people returning to urban versus rural communities. These communities typically differ in terms of the availability of formal and informal supports. We compared patient-reported TBI outcomes for three communities (urban, rural, and remote) and modelled their predictors. Method Six hundred and sixty-two cases with mild-to-severe TBI were identified from hospital records. These individuals received a mail-out survey comprised of standardized outcome measures. The measures assessed: symptoms, quality-of-life, service obstacles, unmet needs, mental health, and community integration. Ninety-one people who were less than two years post-injury returned a usable survey (18% response rate). The location of communities was coded using the Accessibility Remoteness Index of Australia (urban n = 22, rural n = 43, remote n = 26). Results There were no differences in the outcomes due to location (p’s &gt; .05). The significant individual predictors of five of the six outcomes were the participant’s sex, age, and the injury severity; but location did not play a role. TBI outcomes were typically worse if the injury was severe, or if the injured person was older or female. For one outcome (community integration) males fared worse than females. Conclusion Contrary to expectations, location did not affect patient-reported TBI outcomes. This could indicate that the same supports are available to patients, despite their location or; that the different supports were relied on to achieve the same outcomes. The overall findings urge continued investment in TBI rehabilitation, particularly for the subgroups that experienced the worst outcomes.


2017 ◽  
Vol 23 (5) ◽  
pp. 400-411 ◽  
Author(s):  
Michelle May ◽  
Maarten Milders ◽  
Bruce Downey ◽  
Maggie Whyte ◽  
Vanessa Higgins ◽  
...  

AbstractObjectives:The negative effect of changes in social behavior following traumatic brain injury (TBI) are known, but much less is known about the neuropsychological impairments that may underlie and predict these changes. The current study investigated possible associations between post-injury behavior and neuropsychological competencies of emotion recognition, understanding intentions, and response selection, that have been proposed as important for social functioning.Methods:Forty participants with TBI and 32 matched healthy participants completed a battery of tests assessing the three functions of interest. In addition, self- and proxy reports of pre- and post-injury behavior, mood, and community integration were collected.Results:The TBI group performed significantly poorer than the comparison group on all tasks of emotion recognition, understanding intention, and on one task of response selection. Ratings of current behavior suggested significant changes in the TBI group relative to before the injury and showed significantly poorer community integration and interpersonal behavior than the comparison group. Of the three functions considered, emotion recognition was associated with both post-injury behavior and community integration and this association could not be fully explained by injury severity, time since injury, or education.Conclusions:The current study confirmed earlier findings of associations between emotion recognition and post-TBI behavior, providing partial evidence for models proposing emotion recognition as one of the pre-requisites for adequate social functioning. (JINS, 2017,23, 400–411)


2009 ◽  
Vol 26 (12) ◽  
pp. 2157-2167 ◽  
Author(s):  
Michael Schönberger ◽  
Jennie Ponsford ◽  
David Reutens ◽  
Richard Beare ◽  
Richard O'Sullivan

Sign in / Sign up

Export Citation Format

Share Document