Imaging and Analytical Challenges for Nanoscale Semiconductor Technology: Breakthrough Needs for Development and Manufacturing

1997 ◽  
Vol 3 (S2) ◽  
pp. 449-450
Author(s):  
Robert C. McDonald ◽  
A. John Mardinly ◽  
David W. Susnitzky

The complexity of today’s commercial semiconductors has contributed to tremendous gains in device performance; millions of transistors are now packed into each square centimeter of silicon. The reduction of scale occurring within the semiconductor industry places extraordinary new demands on transmission electron microscopy: TEM is becoming a required precision measurement tool for manufacturing and a necessary analytical tool for R&D and failure analysis support. This paper reviews the industry’s needs for advanced TEM sample preparation, imaging and microanalysis and outlines the challenges presented to the TEM community as device dimensions continue along the National Technology Roadmap.In the semiconductor industry, TEM is applied to process debugging, yield engineering, tool qualifications, single-bit failure analyses, and new process development. A large fraction of the analysis effort focuses on transistor, metal, interconnect and dielectric structures grown on and into the Si wafer. Fig. 1 shows a TEM image of a multilayer metal in a near-current generation microprocessor to illustrate the scale and nature of complexity.

2015 ◽  
Vol 2015 (DPC) ◽  
pp. 001446-001474
Author(s):  
Jeroen van Borkulo ◽  
Richard van der Stam ◽  
Guido Knippels

The ongoing trend to thinner wafers which are needed for continuous miniaturization, 3D packaging and IC performance, inevitably means that sole blade dicing evolution is coming to an end. Over the last years several technologies to handle the separation process of thin Si wafer dicing have been evaluated (DBG, Stealth, Plasma, etc). Although they are capable for certain applications to meet the process specifications, they achieve this at expense of flexibility, productivity and process costs. ALSI, the inventor of multi beam dicing for semiconductor materials, has developed a technology using a multi beam laser concept which allows to dice through thin Si IC wafers while achieving a die strength equal or higher than achieved with blade dicing. In this single step process a multi beam laser configuration allows to remove the (ultra) low-K and metal top structures, dice through the Si substrate and recover the die strength (>450MPa for a 70um Si wafer). This technology allows the semiconductor industry to continue with the development of advanced node wafer technology utilizing (ultra) low-K and thick metal structures while having a separation technology that can cope with all these process steps. The presentation will address how the multi beam laser dicing process is an enabling technology and the first process in the world that can meet the die strength criteria without the need of additional process steps which increase the cost and reduce the flexibility and yield of the process. Multi beam laser dicing allows semiconductor manufacturers to execute their technology roadmap in a cost efficient manner. This presentation will address in depth, the challenges and issue's that semiconductor manufacturers are facing with respect to the dicing of thin (ultra) low-K IC wafers. We will present the die strength and quality that has been achieved using the multi beam dicing technology and compare this to other separation technologies. We will disclose how a multi beam process will play a dominant role in achieving an extremely small Heat Affected Zone combined with a significantly higher productivity. It will be demonstrated how a unique combination and optimization of multiple beams, pulse duration, and low pulse energy, can meet the challenging requirements set by the industry. In addition dicing results and achieved productivities will be presented.


2021 ◽  
Author(s):  
Vikas Dixit ◽  
Bryan Gauntt ◽  
Taehun Lee

Abstract The automation of both, transmission electron microscopy (TEM) imaging and lamella preparation using focused ion beam (FIB) has gathered an enormous momentum in last few years, especially in the semiconductor industry. The process development of current and future microprocessors requires a precise control on the patterning of a multitude of ultrafine layers, several of which are in the order of nanometers. The statistical accuracy and reliability of TEM based metrology and failure analysis of such complex and refined structures across the wafer needs a large-scale sampling, which is feasible only with an automation. An inherent requirement of automating TEM sample preparation entails a need of a robust and repeatable methodology that provides both, a good thickness control and an accurate targeting, on the intended feature in the ultra-thin lamella. In this work, key factors that impact both these aspects of a TEM lamella preparation will be discussed. In addition, steps needed to ensure that FIB toolsets consistently and reliably produce high quality samples, will be highlighted.


Author(s):  
Aiza Marie E. Agudon ◽  
Hynlie B. Inguin ◽  
Bryan Christian S. Bacquian

Nowadays, semiconductors and electronics are becoming part of our everyday activities. As the Integrated circuits become more useful to people, it also requires more function, which contain more complex and compact components. Aligned to this package requirement, the more challenging it become to package development as Silicon technology becomes more critical and complex from bare silicon to conventional MOS technology to Ultra Low-K, which requires a different strategy.  The new process development in the Semiconductor industry is a necessity to cope up with these new technologies. Low-k devices always pose a big challenge in achieving good dicing quality. This is because of the weak mechanical properties of the low-k dielectric material used.  Mechanical Sawing is the most popular cutting method for silicon, but with Ultra low-K technology, using mechanical sawing will lead to various sawing defects such as chippings and delamination [1,2]. These leads to the introduction of Laser Grooving to get rid of these dilemmas. Laser grooving uses heat to eradicate metals on this very thin metal wafer dicing saw streets in preparation for wafer saw process to prevent topside chippings and delamination/metal peel off [3]. These defects are not acceptable especially since the product application is a chip card. Since chip cards must be flexible and durable, they require higher die and package strength to serve its purpose. To achieve such package requirement, different method was evaluated such as standard mechanical dicing, standard Laser Grooving and the PI laser groove.   The paper will discuss how we were able to achieve the quality requirement for Ultra Low-K and at the same time eliminating top reject contributor during startup of this device.


Author(s):  
P. B. Basham ◽  
H. L. Tsai

The use of transmission electron microscopy (TEM) to support process development of advanced microelectronic devices is often challenged by a large amount of samples submitted from wafer fabrication areas and specific-spot analysis. Improving the TEM sample preparation techniques for a fast turnaround time is critical in order to provide a timely support for customers and improve the utilization of TEM. For the specific-area sample preparation, a technique which can be easily prepared with the least amount of effort is preferred. For these reasons, we have developed several techniques which have greatly facilitated the TEM sample preparation.For specific-area analysis, the use of a copper grid with a small hole is found to be very useful. With this small-hole grid technique, TEM sample preparation can be proceeded by well-established conventional methods. The sample is first polished to the area of interest, which is then carefully positioned inside the hole. This polished side is placed against the grid by epoxy Fig. 1 is an optical image of a TEM cross-section after dimpling to light transmission.


Author(s):  
Jayhoon Chung ◽  
Guoda Lian ◽  
Lew Rabenberg

Abstract Since strain engineering plays a key role in semiconductor technology development, a reliable and reproducible technique to measure local strain in devices is necessary for process development and failure analysis. In this paper, geometric phase analysis of high angle annular dark field - scanning transmission electron microscope images is presented as an effective technique to measure local strains in the current node of Si based transistors.


Microscopy ◽  
2020 ◽  
Author(s):  
Xiaoguang Li ◽  
Kazutaka Mitsuishi ◽  
Masaki Takeguchi

Abstract Liquid cell transmission electron microscopy (LCTEM) enables imaging of dynamic processes in liquid with high spatial and temporal resolution. The widely used liquid cell (LC) consists of two stacking microchips with a thin wet sample sandwiched between them. The vertically overlapped electron-transparent membrane windows on the microchips provide passage for the electron beam. However, microchips with imprecise dimensions usually cause poor alignment of the windows and difficulty in acquiring high-quality images. In this study, we developed a new and efficient microchip fabrication process for LCTEM with a large viewing area (180 µm × 40 µm) and evaluated the resultant LC. The new positioning reference marks on the surface of the Si wafer dramatically improve the precision of dicing the wafer, making it possible to accurately align the windows on two stacking microchips. The precise alignment led to a liquid thickness of 125.6 nm close to the edge of the viewing area. The performance of our LC was demonstrated by in situ transmission electron microscopy imaging of the dynamic motions of 2-nm Pt particles. This versatile and cost-effective microchip production method can be used to fabricate other types of microchips for in situ electron microscopy.


2020 ◽  
Author(s):  
Radu Malureanu ◽  
Johneph Sukham ◽  
Sezer Köse ◽  
Osamu Takayama ◽  
Andrei Lavrinenko

Organizacija ◽  
2010 ◽  
Vol 43 (2) ◽  
pp. 76-86 ◽  
Author(s):  
Mateja Šenk ◽  
Peter Metlikovič ◽  
Matjaž Maletič ◽  
Boštjan Gomišček

Development of New Product/Process Development Procedure for SMEsThe result of our research is a developed and implemented set of activities for new process or product development (NPD procedure) for SMEs environment in the plastic processing industry, which enables the production of products and services with a high value added.The developed NPD procedure consists of five consecutive and overlapping steps: attracting orders, designing a project, developing a product, developing a process and zero production series. Each distinct step is further divided into sub-activities supported by adequate methods and managed in an information system. Investigated and included were three different methodologies use for NPD procedure in the automotive industry such as Advanced Product Quality Planning (APQP), Design for Six Sigma (DFSS) and Stage/Gate methodology.The results presented in the paper show that the developed NPD procedure significantly improved NPD in terms of cost management and time-effectiveness.


1998 ◽  
Vol 523 ◽  
Author(s):  
John Mardinly ◽  
David W. Susnitzky

AbstractThe demand for increasingly higher performance semiconductor products has stimulated the semiconductor industry to respond by producing devices with increasingly complex circuitry, more transistors in less space, more layers of metal, dielectric and interconnects, more interfaces, and a manufacturing process with nearly 1,000 steps. As all device features are shrunk in the quest for higher performance, the role of Transmission Electron Microscopy as a characterization tool takes on a continually increasing importance over older, lower-resolution characterization tools, such as SEM. The Ångstrom scale imaging resolution and nanometer scale chemical analysis and diffraction resolution provided by modem TEM's are particularly well suited for solving materials problems encountered during research, development, production engineering, reliability testing, and failure analysis. A critical enabling technology for the application of TEM to semiconductor based products as the feature size shrinks below a quarter micron is advances in specimen preparation. The traditional 1,000Å thick specimen will be unsatisfactory in a growing number of applications. It can be shown using a simple geometrical model, that the thickness of TEM specimens must shrink as the square root of the feature size reduction. Moreover, the center-targeting of these specimens must improve so that the centertargeting error shrinks linearly with the feature size reduction. To meet these challenges, control of the specimen preparation process will require a new generation of polishing and ion milling tools that make use of high resolution imaging to control the ion milling process. In addition, as the TEM specimen thickness shrinks, the thickness of surface amorphization produced must also be reduced. Gallium focused ion beam systems can produce hundreds of Ångstroms of amorphised surface silicon, an amount which can consume an entire thin specimen. This limitation to FIB milling requires a method of removal of amorphised material that leaves no artifact in the remaining material.


Sign in / Sign up

Export Citation Format

Share Document