In Situ HREm of Reactions at Interfaces

1997 ◽  
Vol 3 (S2) ◽  
pp. 621-622 ◽  
Author(s):  
R. Sinclair ◽  
T. Itoh ◽  
H. J. Lee ◽  
K. W. Kwon

Reactions at solid-solid interfaces are important both scientifically and technologically. Firstly, there is quite a wide variety of possibilities. Materials can react with one another, forming equilibrium, meta-stable or even amorphous phases. The interface can provide a means to promote phase reactions kinetically, in an analogous manner to catalysis. Even when the materials are mutually compatible chemically, the interface topography and atomic structure can evolve over the course of time. From the practical point-of-view, changes in the interface chemistry and structure can profoundly alter the physical properties. This is especially notable in thin film technology, whereby the interfaces constitute a signigicant proportion of the whole device. In this article, contributions to understanding this field are illustrated through application of in situ and high-resolution electron microscopy (HREM).Basic studies of metal-semicoductor interfacial reactions have been successfully carried out for a number of years. of increasing importance in microelectronics is the stability of layers which prevent chemical interaction, namely the diffusion barriers.

1995 ◽  
Vol 404 ◽  
Author(s):  
P. L. Gai ◽  
C. C. Torardi

AbstractWe report, for the first time, direct studies of the dynamic VOHPO4·1/2H2O precursor to (VO)2P2O7 catalyst transformation using recently developed in-situ environmental-cell, high-resolution, electron microscopy (in-situ ECELL-HREM) under controlled environments. Our observations provide fundamental evidence concerning the nature of the topotactic transformation and associated temperature regimes critical to the formation of active catalysts. The direct ECELL-HREM studies show that the structural transformation begins at ˜ 400°C, and a mixture of the precursor and pyrophosphate phases exists at ˜ 425°C. At 450°C, most of the conversion to VPO has taken place. These atomic-scale studies reveal no amorphous phases during the transformation, and that the atomic periodicity is maintained throughout. No other phases have so far been identified in the transformation. The direct studies are important in the development of selective catalysts.


Author(s):  
V. Castano ◽  
W. Krakow

In non-UHV microscope environments atomic surface structure has been observed for flat-on for various orientations of Au thin films and edge-on for columns of atoms in small particles. The problem of oxidation of surfaces has only recently been reported from the point of view of high resolution microscopy revealing surface reconstructions for the Ag2O system. A natural extension of these initial oxidation studies is to explore other materials areas which are technologically more significant such as that of Cu2O, which will now be described.


1984 ◽  
Vol 41 ◽  
Author(s):  
W. Krakow ◽  
J. T. Wetzel ◽  
D. A. Smith ◽  
G. Trafas

AbstractA high resolution electron microscope study of grain boundary structures in Au thin films has been undertaken from both a theoretical and experimental point of view. The criteria necessary to interpret images of tilt boundaries at the atomic level, which include electron optical and specimen effects, have been considered for both 200kV and the newer 400kV medium voltage microscopes. So far, the theoretical work has concentrated on two different [001] tilt bounda-ries where a resolution of 2.03Å is required to visualize bulk lattice structures on either side of the interface. Both a high angle boundary, (210) σ=5, and a low angle boundary, (910) σ=41, have been considered. Computational results using multislice dynamical diffraction and image simulations of relaxed bounda-ries viewed edge-on and with small amounts of beam and/or specimen inclina-tion have been obtained. It will be shown that some structural information concerning grain boundary dislocations can be observed at 200kV. However, many difficulties occur in the exact identification of the interface structure viewed experimentally for both [001] and [011] boundaries since the resolution required is near the performance limit of a 200kV microscope. The simulated results at 400kV indicate a considerable improvement will be realized in obtain-ing atomic structure information at the interface.


1964 ◽  
Vol 19 (7-8) ◽  
pp. 835-843 ◽  
Author(s):  
H. Poppa

Early stages of oriented overgrowth of Ag, Au, and Pd on thin, single-crystal substrates of mica, molybdenite, Au and Pd were studied by high-resolution electron microscopy and diffraction. Cleaning of substrate surfaces and deposition of evaporated materials were conducted inside an electron microscope. High-magnification, continuous observation during growth permitted investigation of the kinetics of growth. A number of probably elementary epitaxial processes were studied in detail. Nucleation and growth behavior was examined for different supersaturations and free surface energies of substrate and overgrowth materials. The influence of alloying on growth and the spacing of parallel moiré structures was investigated.


1997 ◽  
Vol 3 (S2) ◽  
pp. 673-674
Author(s):  
M. Rühle ◽  
T. Wagner ◽  
S. Bernath ◽  
J. Plitzko ◽  
C. Scheu ◽  
...  

Heterophase boundaries play an important role in advanced materials since those materials often comprise different components. The properties of the materials depend strongly on the properties of the interface between the components. Thus, it is important to investigate the stability of the microstructure with respect to annealing at elevated temperatures. In this paper results will be presented on the structure and composition of the interfaces between Cu and (α -Al2O3. The interfaces were processed either by growing a thin Cu overlayer on α- Al2O3 in a molecular beam epitaxy (MBE) system or by diffusion bonding bulk crystals of the two constituents in an UHV chamber. To improve the adhesion of Cu to α -Al2O3 ultrathin Ti interlayers were deposited between Cu and α - Al2O3.Interfaces were characterized by different transmission electron microscopy (TEM) techniques. Quantitative high-resolution electron microscopy (QHRTEM) allows the determination of the structure (coordinates of atoms) while analytical electron microscopy (AEM) allows the determination of the composition with high spatial resolution.


1988 ◽  
Vol 100 ◽  
Author(s):  
D. E. Luzzi ◽  
L. D. Marks ◽  
M. I. Buckett ◽  
J. W. Strane ◽  
B. W. Wessels ◽  
...  

ABSTRACTHigh resolution electron microscope (HREM) studies provide the ability to study desorption and sputtering from the perspective of the analysis of the resultant materials, their structure, composition and atomic registry (orientation with respect to the original,material and the irradiation). This is a neglected facet of surface irradiation effects research, yet it is the most important from the technological point of view. In the current study, surface electron irradiation processes in oxides were studied in-situ in a Hitachi H-9000 HREM operated at incident electron energies of 100–300 keV. It was found that a wide range of processes occur in the HREM which are dependent on the energy and flux of the incident electrons and on the material properties. Both ballistic and electronic irradiation damage was observed and the material responses included surface sputtering, amorphisation, chemical disordering, desorption of O and metal surface layer creation, surface roughening and bulk defect creation.


Sign in / Sign up

Export Citation Format

Share Document