In-Situ Dynamic Transformation of Vanadyl Hydrogen Phosphate Hydrate, VOHPO4·1/2H2O, to Vanadyl Pyrophosphate Catalyst, (VO)2P2O7

1995 ◽  
Vol 404 ◽  
Author(s):  
P. L. Gai ◽  
C. C. Torardi

AbstractWe report, for the first time, direct studies of the dynamic VOHPO4·1/2H2O precursor to (VO)2P2O7 catalyst transformation using recently developed in-situ environmental-cell, high-resolution, electron microscopy (in-situ ECELL-HREM) under controlled environments. Our observations provide fundamental evidence concerning the nature of the topotactic transformation and associated temperature regimes critical to the formation of active catalysts. The direct ECELL-HREM studies show that the structural transformation begins at ˜ 400°C, and a mixture of the precursor and pyrophosphate phases exists at ˜ 425°C. At 450°C, most of the conversion to VPO has taken place. These atomic-scale studies reveal no amorphous phases during the transformation, and that the atomic periodicity is maintained throughout. No other phases have so far been identified in the transformation. The direct studies are important in the development of selective catalysts.

1997 ◽  
Vol 3 (S2) ◽  
pp. 621-622 ◽  
Author(s):  
R. Sinclair ◽  
T. Itoh ◽  
H. J. Lee ◽  
K. W. Kwon

Reactions at solid-solid interfaces are important both scientifically and technologically. Firstly, there is quite a wide variety of possibilities. Materials can react with one another, forming equilibrium, meta-stable or even amorphous phases. The interface can provide a means to promote phase reactions kinetically, in an analogous manner to catalysis. Even when the materials are mutually compatible chemically, the interface topography and atomic structure can evolve over the course of time. From the practical point-of-view, changes in the interface chemistry and structure can profoundly alter the physical properties. This is especially notable in thin film technology, whereby the interfaces constitute a signigicant proportion of the whole device. In this article, contributions to understanding this field are illustrated through application of in situ and high-resolution electron microscopy (HREM).Basic studies of metal-semicoductor interfacial reactions have been successfully carried out for a number of years. of increasing importance in microelectronics is the stability of layers which prevent chemical interaction, namely the diffusion barriers.


Author(s):  
Robert Sinclair ◽  
Toyohiko J. Konno

We have applied in situ high-resolution electron microscopy (HREM) to the study of interface reactions, particularly in metal-semiconductor systems. There is contrasting behavior whether or not the manufactured interface undergoes a chemical reaction. The in situ technique allows determination of the reaction mechanisms on an atomic scale.Reactive interfaces are characterized by systems in which new chemical compounds are formed (e.g., silicides for metal-silicon interfaces, metal gallides and arsenides for GaAs, etc.). We found that the equilibrium phase formation is often preceded by a solid-state amorphization reaction. In situ observations allow very precise measurement of the reaction rate in a sufficient temperature range to confirm that this process is diffusion controlled. Crystallization of the amorphous material can be followed as well as the development of any crystallographic orientation relationships. A ledge growth mechanism can easily be distinguished from a random process.It might be expected that non-reactive interfaces are stable upon heating.


MRS Bulletin ◽  
1994 ◽  
Vol 19 (6) ◽  
pp. 26-31 ◽  
Author(s):  
Robert Sinclair

Processing has always been a key component in the development of new materials. Basic scientific understanding of the reactions and transformations that occur has obvious importance in guiding progress. Invaluable insight can be provided by observing the changes during processing, especially at high magnification by in situ microscopy. Now that this can be achieved at the atomic level by using high-resolution electron microscopy (HREM), atomic behavior can be seen directly. Accordingly, many deductions concerning reactions in materials at the atomic scale are possible.The purpose of this article is to illustrate the level reached by in situ HREM. The essential procedure is to form a high-resolution image of a standard transmission electron microscope (TEM) sample and then to alter the structure by some means in a controlled manner, such as by heating. Continual recording on videotape allows subsequent detailed analysis of the behavior, even on a frame-by-frame (1/30 second) basis. The most obvious advantage is to follow the atomic rearrangements directly in real time. However, in addition, by continuous recording no stages in a reaction are missed, which can often occur in a series of conventional ex situ annealed samples because of the limited number of samples that can realistically be examined by HREM. One can be sure that the same reaction, in the same area, is being studied. Furthermore, by changing the temperature systematically, extremely precise kinetic measurements can be made (e.g., for activation energies and kinetic laws) and the whole extent of a material transformation can be investigated in one sample, something that would take months of work if studied conventionally. The information provided by in situ HREM is often unique and so it can become an important technique for fundamental materials investigations.


Author(s):  
David J. Smith

The era of atomic-resolution electron microscopy has finally arrived. In virtually all inorganic materials, including oxides, metals, semiconductors and ceramics, it is possible to image individual atomic columns in low-index zone-axis projections. A whole host of important materials’ problems involving defects and departures from nonstoichiometry on the atomic scale are waiting to be tackled by the new generation of intermediate voltage (300-400keV) electron microscopes. In this review, some existing problems and limitations associated with imaging inorganic materials are briefly discussed. The more immediate problems encountered with organic and biological materials are considered elsewhere.Microscope resolution. It is less than a decade since the state-of-the-art, commercially available TEM was a 200kV instrument with a spherical aberration coefficient of 1.2mm, and an interpretable resolution limit (ie. first zero crossover of the contrast transfer function) of 2.5A.


1998 ◽  
Vol 4 (S2) ◽  
pp. 556-557
Author(s):  
S. Stemmer ◽  
G. Duscher ◽  
E. M. James ◽  
M. Ceh ◽  
N.D. Browning

The evaluation of the two dimensional projected atom column positions around a defect or an interface in an electronic ceramic, as it has been performed in numerous examples by (quantitative) conventional high-resolution electron microscopy (HRTEM), is often not sufficient to relate the electronic properties of the material to the structure of the defect. Information about point defects (vacancies, impurity atoms), and chemistry or bonding changes associated with the defect or interface is also required. Such complete characterization is a necessity for atomic scale interfacial or defect engineering to be attained.One instructive example where more than an image is required to understand the structure property relationships, is that of grain boundaries in Fe-doped SrTi03. Here, the different formation energies of point defects cause a charged barrier at the boundary, and a compensating space charge region around it. The sign and magnitude of the barrier depend very sensitively on the atomic scale composition and chemistry of the boundary plane.


1986 ◽  
Vol 77 ◽  
Author(s):  
Mary Beth Stearns ◽  
Amanda K. Petford-Long ◽  
C.-H. Chang ◽  
D. G. Stearns ◽  
N. M. Ceglio ◽  
...  

ABSTRACTThe technique of high resolution electron microscopy has been used to examine the structure of several multilayer systems (MLS) on an atomic scale. Mo/Si multilayers, in use in a number of x-ray optical element applications, and Mo/Si multilayers, of interest because of their magnetic properties, have been imaged in cross-section. Layer thicknesses, flatness and smoothness have been analysed: the layer width can vary by up to 0.6nm from the average value, and the layer flatness depends on the quality of the substrate surface for amorphous MLS, and on the details of the crystalline growth for the crystalline materials. The degree of crystallinity and the crystal orientation within the layers have also been investigated. In both cases, the high-Z layers are predominantly crystalline and the Si layers appear amorphous. Amorphous interfacial regions are visible between the Mo and Si layers, and crystalline cobalt suicide interfacial regions between the Co and Si layers. Using the structural measurements obtained from the HREM results, theoretical x-ray reflectivity behaviour has been calculated. It fits the experimental data very well.


1964 ◽  
Vol 19 (7-8) ◽  
pp. 835-843 ◽  
Author(s):  
H. Poppa

Early stages of oriented overgrowth of Ag, Au, and Pd on thin, single-crystal substrates of mica, molybdenite, Au and Pd were studied by high-resolution electron microscopy and diffraction. Cleaning of substrate surfaces and deposition of evaporated materials were conducted inside an electron microscope. High-magnification, continuous observation during growth permitted investigation of the kinetics of growth. A number of probably elementary epitaxial processes were studied in detail. Nucleation and growth behavior was examined for different supersaturations and free surface energies of substrate and overgrowth materials. The influence of alloying on growth and the spacing of parallel moiré structures was investigated.


Sign in / Sign up

Export Citation Format

Share Document