Cluster Analysis of Automated Fine-Particle Analysis Using Scanning Electron Microscopy

1997 ◽  
Vol 3 (S2) ◽  
pp. 1071-1072
Author(s):  
C.A. O’Keefe ◽  
J.P. Hurley

Because of analytical advances, submicron particles as small as 0.2 μm can be characterized for chemical composition, size, and shape using scanning electron microscopy (SEM). Once these characteristics are determined, cluster analysis can be used to group the individual particles into categories based on size, shape, and chemical composition.Submicron particle analysis is important when characterizing the ash to provide information to help solve ash-related problems in coal combustion and gasification systems. Since a combustion system has an excess of oxygen available, the resulting ash is typically easier to characterize than ash from a gasification system. In a gasification system, the lack of oxygen results in additional categories high in Cl and P.Adequate dispersion of submicron particles for proper analysis of individual particles is required because of the analysis volume of the SEM beam. Therefore, an aliquot of an aqueous solution with a set sample-to-solvent ratio is drawn while being sonicated. A few drops of solution are placed on a vitreous carbon substrate, allowing for particle dispersion on the surface of a smooth substrate. Next, the particles are analyzed by the fine-particle technique (FPT).

Author(s):  
Catherine A. O’Keefe ◽  
Tina M. Watne

Owing to analytical advances, submicron particles as small as 0.1 μm can be characterized for chemical composition, size, and shape using scanning electron microscopy (SEM). Once these characteristics are determined, the individual particles can be grouped into categories that provide size, shape, and chemical/mineral distributions of the fine particle fraction.An important application of submicron particle analysis is in solving ash-related problems in coal combustion and gasification systems. The Energy & Environmental Research Center (EERC) at the University of North Dakota is involved in an international consortium formed by the Electric Power Research Institute (EPRI), with U.S. Department of Energy Morgantown Energy Technology Center support, to study ash-related problems associated with the cleaning of hot gases in advanced energy systems. Before the gases are sent through a gas turbine to produce electricity, the particulates are removed with ceramic filters. Filters designed to trap the ash have a tendency to become plugged with ash, eventually causing operational problems. The focus of the project is to characterize the ashes from several filter systems to determine the mechanisms by which difficult-to-clean ash is formed and how it blinds hot-gas filters.


2019 ◽  
Vol 70 (9) ◽  
pp. 3210-3212
Author(s):  
Oana Claudia Ciobotea Barbu ◽  
Ioana Alina Ciobotaru ◽  
Anca Cojocaru ◽  
Florin Mihai Benga ◽  
Danut Ionel Vaireanu

Nickel-Copper metallic layers were deposited onto a steel substrate by using the electrochemical method. The morphology and the chemical composition of the deposited layers were studied by scanning electron microscopy. The electrical capacitance was measured on a functional supercapacitor made of two Ni-Cu deposited layers and a Nafion 117� membrane hydrated with distilled water, which served as a dielectric separator.


2014 ◽  
Vol 971-973 ◽  
pp. 802-805
Author(s):  
Wei Feng Zhang ◽  
Li Yan ◽  
Fu Xia Zhang

For the problem of high-speed rotating centrifuge spindle fracture failures, relevant analyses are conducted from the perspective of microstructure, chemical composition and fracture mechanics by using scanning electron microscopy and related instruments. Experimental results and analyses indicate that the spindle fracture is fatigue failure, mainly caused by cold cracks generated on the journal surfacing. Based on the analysis results, improvements and measures are suggested to better solve the spindle weld fracture failure problems.


Clay Minerals ◽  
1980 ◽  
Vol 15 (2) ◽  
pp. 165-173 ◽  
Author(s):  
J. H. Kirkman ◽  
W. J. McHardy

AbstractThe morphology of volcanic glass particles in rhyolitic and andesitic tephra of central North Island and Taranaki areas of New Zealand has been studied by scanning electron microscopy. Electron probe analyses of the glasses are compared with those of the clays to which they weather. Loss of silica characterizes the weathering of both glasses. The rapid rate of weathering of andesitic glass is attributed to its occurrence as fine, soft microlites and extensive substitution of Al for Si in the structure. Rhyolitic glass weathers more slowly because it occurs as hard and brittle particles containing relatively little alumina. It is suggested that the structure, chemical composition and chemical activity of allophane is governed largely by the chemical composition and bonding characteristics of the parent glass.


2008 ◽  
Vol 23 (8) ◽  
pp. 2245-2253 ◽  
Author(s):  
A. Gutiérrez ◽  
F. Pászti ◽  
A. Climent-Font ◽  
J.A. Jiménez ◽  
M.F. López

In the present work, the oxide layers developed at elevated temperature on three vanadium-free titanium alloys, of interest as implant biomaterials, were studied by Rutherford backscattering spectroscopy, elastic recoil detection analysis, and scanning electron microscopy. The chemical composition of the alloys investigated, in wt%, was Ti–7Nb–6Al, Ti–13Nb–13Zr, and Ti–15Zr–4Nb. Upon oxidation in air at 750 °C, an oxide scale forms, with a chemical composition, morphology, and thickness that depend on the alloy composition and the oxidation time. After equal exposure time, the Ti–7Nb–6Al alloy exhibited the thinnest oxide layer due to the formation of an Al2O3-rich layer. The oxide scale of the two TiNbZr alloys is mainly composed of Ti oxides, with small amounts of Nb and Zr dissolved. For both TiNbZr alloys, the role of the Nb-content on the mechanism of the oxide formation is discussed.


2015 ◽  
Vol 229 ◽  
pp. 3-10 ◽  
Author(s):  
Bartłomiej Dybowski ◽  
Bogusława Adamczyk-Cieślak ◽  
Kinga Rodak ◽  
Iwona Bednarczyk ◽  
Andrzej Kiełbus ◽  
...  

The complex microstructure of as-cast AlSi7Mg alloy has been investigated. Microstructure observations were done using light microscopy, scanning electron microscopy and transmission electron microscopy. Chemical composition of the microstructure constituents was investigated by means of energy dispersive spectrometry, conducted both during SEM and STEM investigations. Selected area diffraction was used to identify the phases in the alloy. Microstructure of the alloy in the as-cast condition consists of Al-Si eutectic and intermetallic phases in the interdendritic regions. These are: Mg2Si, α-AlFeMnS, β-AlFeSi and π-AlFeSiMg phases. What is more, number of fine precipitates were found within the α-Al dendrites. Only the occurrence of U1 (MgAl2Si2) phase has been confirmed.


2018 ◽  
Vol 880 ◽  
pp. 241-247
Author(s):  
Claudiu Nicolicescu ◽  
Victor Horia Nicoară ◽  
Costel Silviu Bălulescu

Alloys based on Cu/Cr and Cu/Cr/W attract the attention due to their presence in different applications that require higher electrical properties which are combined with good mechanical properties. In order to synthesis the material based on Cu/Cr and Cu/Cr/W, mechanical alloying technique was used. Four mixtures, X1 (99%CuCr), X2 (97%CuCr), X3 (94%Cu1%CrW), X4 (92%Cu3%CrW – weight percent), were prepared using a vario planetary ball mill Pulverisette 4 made by Fritsch. The mixtures obtained after 10 hours were analyzed by scanning electron microscopy (SEM). It was found that the presence of chromium and tungsten influence the morphology and the particles tend to be flat. Sinter ability and microhardness are influenced by the chemical composition of the samples.


2017 ◽  
Vol 17 (1) ◽  
pp. 85-89
Author(s):  
B. Koomson ◽  
E. K. Asiam ◽  
W. Skinner ◽  
J. Addai-Mensah

This study was carried out on leaching of tailings at 30 ᵒC and 40 ᵒC. The mineralogical and chemical composition of the tailings material were determined by Quantitative X-Ray Diffractometry (QXRD) and Scanning Electron Microscopy combined with Energy Dispersive Spectroscopy (SEM-EDAX). The study revealed that the tailings contain sulphides (arsenopyrite and pyrite) which can leach to produce arsenic (As) and other ions in solution. The acid released during leaching depends on the temperature of leaching. More acid was produced at higher temperature (40 ᵒC) than lower temperature (30 ᵒC). It was established that arsenic precipitation from solution was higher at higher temperature (40 ᵒC) than lower temperature (30 ᵒC). Mimicking the study in a typical tailings environment, it could be proposed that As mobilisation will be enhanced at lower temperature (30 ᵒC) than at higher temperature (40 ᵒC). Keywords: Tailings, Leaching, Arsenopyrite, Heavy metals and Temperature


Sign in / Sign up

Export Citation Format

Share Document