Self-Assembling Of Ordered Mesoporous Titania Nanostructures

1999 ◽  
Vol 5 (S2) ◽  
pp. 194-195
Author(s):  
J.S. Yin ◽  
Z.L. Wang

Ordered self-assembly of nanocrystals is scientifically interesting due to not only the unique properties of the nanocrystals, but also the collective properties of the assembly. Compared to lithography method, self-assembly is limited by a lack of control over the sizes of the ordered arrays, resulting in difficulties in characterizing their physical and chemical properties. New techniques are needed to manipulate the self-assembling process and the nanostructures formed.In this work, polystyrene (PS) spheres were used as the template to form large bulk ordered anatase nanostructure with cobalt doping. The ordered PS template was infiltrated with absolute alcohol solution of titanium butoxide. After the precursor was dried, it was treated at 160°C for 5 hours and then at 450°C for another 5 hours. To dope cobalt into the structure, the porous titania host was immersed in a heptane solution with cobalt carbonyl. After drying in vacuum at room temperature, it was treated at 160°C.

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3610
Author(s):  
Jialin Yu ◽  
Huayu Qiu ◽  
Shouchun Yin ◽  
Hebin Wang ◽  
Yang Li

Pluronic polymers (pluronics) are a unique class of synthetic triblock copolymers containing hydrophobic polypropylene oxide (PPO) and hydrophilic polyethylene oxide (PEO) arranged in the PEO-PPO-PEO manner. Due to their excellent biocompatibility and amphiphilic properties, pluronics are an ideal and promising biological material, which is widely used in drug delivery, disease diagnosis, and treatment, among other applications. Through self-assembly or in combination with other materials, pluronics can form nano carriers with different morphologies, representing a kind of multifunctional pharmaceutical excipients. In recent years, the utilization of pluronic-based multi-functional drug carriers in tumor treatment has become widespread, and various responsive drug carriers are designed according to the characteristics of the tumor microenvironment, resulting in major progress in tumor therapy. This review introduces the specific role of pluronic-based polymer drug delivery systems in tumor therapy, focusing on their physical and chemical properties as well as the design aspects of pluronic polymers. Finally, using newer literature reports, this review provides insights into the future potential and challenges posed by different pluronic-based polymer drug delivery systems in tumor therapy.


2011 ◽  
Vol 110-116 ◽  
pp. 508-513
Author(s):  
Ling Bin Kong ◽  
Ru Tao Wang ◽  
Xiao Wei Wang ◽  
Zhen Sheng Yang ◽  
Yong Chun Luo ◽  
...  

Metal nanocatalysts, as the anodic materials, have become increasingly important in fuel cells due to their unique physical and chemical properties. Here we report the ordered mesoporous carbon (CMK-3) supported silver nanocatalysts have been prepared through the wet chemical reduction by using the reduction of formaldehyde. The electrochemical properties of the Ag/CMK-3 nanocatalysts for formaldehyde oxidation are studied by cyclic voltammograms (CV) and chronoamperometric curves (i-t) in alkaline aqueous solutions. The results show that the peak current density (from CV) of the Ag/CMK-3 electrode is 112 mA cm-2, above 2 times higher than that of Ag/XC-72 at the same Ag loading (14.15 μg cm-2). Furthermore, the i-t curves demonstrate that the Ag/CMK-3 nanocatalysts are efficient and stable electrocatalysts for anodic oxidation of formaldehyde in alkaline solutions. Our results indicate that the application potential of Ag/CMK-3 nanocatalysts with the improved electrocatalytic activity has far reaching effects on fuel cells and sensors.


2017 ◽  
Vol 8 ◽  
pp. 2339-2344 ◽  
Author(s):  
Alexandra M Patron ◽  
Timothy S Hooker ◽  
Daniel F Santavicca ◽  
Corey P Causey ◽  
Thomas J Mullen

The development of methods to produce nanoscale features with tailored chemical functionalities is fundamental for applications such as nanoelectronics and sensor fabrication. The molecular-ruler process shows great utility for this purpose as it combines top-down lithography for the creation of complex architectures over large areas in conjunction with molecular self-assembly, which enables precise control over the physical and chemical properties of small local features. The molecular-ruler process, which most commonly uses mercaptoalkanoic acids and metal ions to generate metal-ligated multilayers, can be employed to produce registered nanogaps between metal features. Expansion of this methodology to include molecules with other chemical functionalities could greatly expand the overall versatility, and thus the utility, of this process. Herein, we explore the use of alkanethiol molecules as the terminating layer of metal-ligated multilayers. During this study, it was discovered that the solution deposition of alkanethiol molecules resulted in low overall surface coverage with features that varied in height. Because features with varied heights are not conducive to the production of uniform nanogaps via the molecular-ruler process, the vapor-phase deposition of alkanethiol molecules was explored. Unlike the solution-phase deposition, alkanethiol islands produced by vapor-phase deposition exhibited markedly higher surface coverages of uniform heights. To illustrate the applicability of this method, metal-ligated multilayers, both with and without an alkanethiol capping layer, were utilized to create nanogaps between Au features using the molecular-ruler process.


2020 ◽  
Vol 21 (20) ◽  
pp. 7577
Author(s):  
Noriyuki Uchida ◽  
Takahiro Muraoka

Peptide-based fibrous supramolecular assemblies represent an emerging class of biomaterials that can realize various bioactivities and structures. Recently, a variety of peptide fibers with attractive functions have been designed together with the discovery of many peptide-based self-assembly units. Cross-linking of the peptide fibers is a key strategy to improve the functions of these materials. The cross-linking of peptide fibers forming three-dimensional networks in a dispersion can lead to changes in physical and chemical properties. Hydrogelation is a typical change caused by cross-linking, which makes it applicable to biomaterials such as cell scaffold materials. Cross-linking methods, which have been conventionally developed using water-soluble covalent polymers, are also useful in supramolecular peptide fibers. In the case of peptide fibers, unique cross-linking strategies can be designed by taking advantage of the functions of amino acids. This review focuses on the current progress in the design of cross-linked peptide fibers and their applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-20
Author(s):  
Ksenia Loskutova ◽  
Dmitry Grishenkov ◽  
Morteza Ghorbani

Acoustic droplet vaporization (ADV) is the physical process in which liquid undergoes phase transition to gas after exposure to a pressure amplitude above a certain threshold. In recent years, new techniques in ultrasound diagnostics and therapeutics have been developed which utilize microformulations with various physical and chemical properties. The purpose of this review is to give the reader a general idea on how ADV can be implemented for the existing biomedical applications of droplet vaporization. In this regard, the recent developments in ultrasound therapy which shed light on the ADV are considered. Modern designs of capsules and nanodroplets (NDs) are shown, and the material choices and their implications for function are discussed. The influence of the physical properties of the induced acoustic field, the surrounding medium, and thermophysical effects on the vaporization are presented. Lastly, current challenges and potential future applications towards the implementation of the therapeutic droplets are discussed.


RSC Advances ◽  
2017 ◽  
Vol 7 (78) ◽  
pp. 49463-49472 ◽  
Author(s):  
Mohammad Hadi Nematollahi ◽  
Abbas Pardakhty ◽  
Masoud Torkzadeh-Mahanai ◽  
Mehrnaz Mehrabani ◽  
Gholamreza Asadikaram

Recently, the self-assembly property of nonionic surfactants has been utilized to create vesicles as alternatives to liposomes.


2011 ◽  
Vol 492 ◽  
pp. 160-163
Author(s):  
Cai Xia Li ◽  
Qing Lv ◽  
Jie Song ◽  
Dan Yu Jiang ◽  
Qiang Li

Nano-sheets are two-dimensional sheet materials exfoliated from the inorganic layered compounds by various physical and chemical methods. Their unique characteristics insertion reaction and excellent physical and chemical properties have attracted more and more researchers' widespread interests. Selecting quartz glass as the substrate, using layer by layer self-assembly technology, different nano-films materials are prepared. UV/Vis spectroscopy confirmed nano-films materials have been successfully assembled using LBL self-assembly technique. Raman spectrum are mainly used to analyze and characterize the structure of nano-films materials.


Author(s):  
Kristina Ivana Fabijanic ◽  
Aída Ninfa Salinas López ◽  
Long Pan ◽  
Chi-Yuan Cheng ◽  
Yu Wang ◽  
...  

AbstractThere is an increasing need for materials with tunable physical and chemical properties that are relatively non-toxic and efficacious for their intended application. Many wood stains and finishes emit toxic chemicals which may have serious implications to one’s health. A novel alternative material is realized between xanthan gum and Neodol, a non-ionic surfactant. The resulting three-dimensional film is evaluated as a free-radical scavenger for the protection of wood at different ratios. Atomic force microscopy visualizes the topography and quantifies the local nanomechanics, while rheological measurements showcase a shift from viscoelastic material to gel. Electron plasmon resonance confirms the free-radical reducing ability (3.5 times), while liquid chromatography mass spectroscopy quantifies the UV degradation of sinapyl alcohol. This material has potential, not only in coating industries as a safer option, but also in those industries requiring flexibility and tenability, namely for biosensors and anti-inflammatory therapeutics. Graphic abstract


2018 ◽  
Vol 284 ◽  
pp. 1074-1079
Author(s):  
A.V. Vyboishchik ◽  
I.L. Kostiunina

Environmental issues are among the most challenging problems affecting living conditions of urban population in nowadays’ Russia, and, therefore, are the most crucial questions needed solution under current industrial conditions. One of the main weaknesses of the contemporary Russian cities’ aesthetical appearance is the insufficient protection of buildings from atmospheric phenomena, viz. temperature, humidity, precipitations, etc. In addition, industrial emissions are the second main cause impeding the durability of urban buildings’ coatings. The given article describes new techniques in producing masonry and protective paints’ production in Chelyabinsk Region. The traditional technique of paints coatings’, e.g. liquid glass’, manufacture, is researched, with its weak points described, and new techniques proposed. The influence the composition of the raw material on basic properties of masonry paints under different condition is studied. The application of new techniques utilizing industrial emissions in urban areas can solve the above-listed problems, which also, in addition with the basic physical and chemical properties’ improvement, will obtain masonry paints having reduced cost and increased hardness.


Author(s):  
Brigid R. Hey wood ◽  
Caroline German

Anisotropic inorganic materials are desirable as they possess unique physical and chemical properties resulting from the manner in which the particulate components assemble. The facility to control the ordering of colloidal inorganic particles could presage dramatic improvements in the fabrication of ceramics, catalysts or paints. Biological systems have already harnessed the manifold advantages of such materials, consider shells, teeth, bones etc.(Figures 1 & 2). Synthetic strategies for the formation of nanodimensional inorganic solids abound but there are few reliable methods currently available for directing their subsequent aggregation. Some degree of ordering can be achieved by the application of external forces (magnetic, electrical) but the aggregates readily dissemble once the stimulus is removed. The requirement is, therefore, for an effective molecular route to the ordered assembly and construction of hierarchical inorganic microstructures.The present work forms part of an extended programme of research investigating crystal tectonics, the ordering of nanodimensional inorganic solids. Here, the controlled morphological tailoring of inorganic crystals to yield a form which favours self-assembly has been investigated.


Sign in / Sign up

Export Citation Format

Share Document