Microstructural Evaluation and Quantitative Analysis in the Unleaded Solder Joint

1999 ◽  
Vol 5 (S2) ◽  
pp. 602-603
Author(s):  
J.G. Duh ◽  
Y.G. Lee ◽  
F.B. Wu

Solder joints provide mechanical and electronic connections between solders and components for various levels in microelectronic package. However, due to different thermal expansion coefficients and elastic modulus of the associated materials, solder joints are susceptible to fatigue degration, microcracks and fracture. The solder joint reliability is, therefore, critical in the evalution of the joint quality. Recently, the employment of lead-free solder is attractive due to the environmental concern of the Pb-containing solder. Hence, the investigation on the unleaded solder joint is of practical importance in the field of microelectronic package.Intermetallic compounds (IMC), which form and grow between solders and metallizations, are considered to be a source of mechanical weakness for its brittleness and different coefficient of thermal expansion from the metallization or the solder.

2006 ◽  
Vol 20 (25n27) ◽  
pp. 4553-4558
Author(s):  
OUK SUB LEE ◽  
NO HOON MYOUNG ◽  
DONG HYEOK KIM ◽  
MAN JAE HUR ◽  
SI WOON HWANG

The use of BGA (Ball Grid Array) interconnects utilizing the lead-free solder joint has grown rapidly because of its small volume and diversity of application. Thus, it requires the continuous quantification and refinement of lead-free solder joint reliability. The lead-free solder creep and cyclically applied mechanical loads cause metal fatigue on the lead-free solder joint which inevitably leads to an electrical discontinuity. In the field application, BGA solder joints experience mechanical loads during temperature changes caused by power up/down events as the result of the CTE (Coefficient of Thermal Expansion) mismatch between the substrate and the Si die. In this paper, extremely small resistance changes at joint area corresponding to through-cracks generated by thermal fatigue were measured. In this way, the failure was defined in terms of anomalous changes in electrical resistance of the joint. Furthermore the reliability of BGA solder joints in thermal cycling is evaluated by using the modified coffin-Manson criterion which may define and distinguish failure. Any change in circuit resistance according to the accumulated damage induced by the thermal cycling in the joint was recorded and evaluated in order to quantitate reliability of solder joint.


2018 ◽  
Vol 52 (27) ◽  
pp. 3745-3758 ◽  
Author(s):  
Amin Bahrami ◽  
Niloofar Soltani ◽  
Martin I Pech-Canul ◽  
Shaghayegh Soltani ◽  
Luis A González ◽  
...  

In this study, wettability behavior of B4C substrate as well as B4C/crystalline rice husk ash and B4C/amorphous rice husk ash substrates with two aluminum alloys were studied. The electrical resistivity, thermal expansion coefficients, and thermal diffusivity of bilayer Al/B4C/rice husk ash composite fabricated by one-step pressureless infiltration were measured and the obtained data were systemically analyzed using the Taguchi method and analysis of variance. Boron carbide substrates after addition of amorphous or crystalline rice husk ash display good wettability with molten aluminum alloys. The results show that, electrical resistivity of Al/B4C/rice husk ash composites is mainly influenced by initial preform porosity, while the coefficient of thermal expansion of composites is determined by the chemical composition of infiltrated alloys. The measured values for coefficient of thermal expansion (10.5 × 10−6/℃) and electrical resistivity (0.60 × 10−5 Ω.m) of Al/B4C/rice husk ash composites, fabricated according to analysis of variance's optimal conditions are in good agreement with those of the projected values (11.02 × 10−6/℃ and 0.65 × 10−5 Ω.m, respectively). The difference between the corresponding values obtained from verification tests and projected values, for electrical resistivity and coefficient of thermal expansion are less than 5%. Finally, as a material selection approach, the strengths and weaknesses of the composites have been graphed in the form of radar diagrams.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000534-000542
Author(s):  
Ephraim Suhir ◽  
Sung Yi ◽  
Jennie S. Hwang ◽  
R. Ghaffarian

Abstract The “head-in-pillow” (HnP) defects in lead-free solder joint interconnections of IC packages with conventional (small) stand-off heights of the solder joints, and particularly in packages with fine pitches, are attributed by many electronic material scientists to the three major causes: 1) attributes of the manufacturing process, 2) solder material properties and 3)design-related issues. The latter are thought to be caused primarily by elevated stresses in the solder material, as well as by the excessive warpage of the PCB-package assembly and particularly to the differences in the thermally induced curvatures of the PCB and the package. In this analysis the stress-and-warpage issue is addressed using an analytical predictive stress model. This model is a modification and an extension of the model developed back in 1980-s by the first author. It is assumed that it is the difference in the post-fabrication deflections of the PCB-package assembly that is the root cause of the solder materials failures and particularly and perhaps the HnP defects. The calculated data based on the developed analytical thermal stress model suggest that the replacement of the conventional ball-grid-array (BGA) designs with designs characterized by elevated stand-off heights of the solder joints could result in significant stress and warpage relief and, hopefully, in a lower propensity of the IC package to HnP defects as well. The general concepts are illustrated by a numerical example, in which the responses to the change in temperature of a conventional design referred to as ball-grid-array (BGA) and a design with solder joints with elevated stand-off heights referred to as column-grid-array (CGA) are compared. The computed data indicated that the effective stress in the solder material is relieved by about 40% and the difference between the maximum deflections of the PCB and the package is reduced by about 60%, when the BGA design is replaced by a CGA system. Although no proof that the use of solder joints with elevated stand-off heights will lessen the package propensity to the HnP defects is provided, the authors think that there is a reason to believe that the application of solder joints with elevated stand-off heights could result in a substantial improvement in the general IC package performance, including, perhaps, its propensity to HnP defects.


2012 ◽  
Vol 622-623 ◽  
pp. 195-199 ◽  
Author(s):  
M.A.A. Mohd Salleh ◽  
A.R. Nik Nurhidayatul Suhada ◽  
Flora Somidin ◽  
Rafezi Ahmad Khairel ◽  
C.S. Lee ◽  
...  

Electromigration effects on the solder joint formation of 99.3Sn-0.7Cu and 96.5Sn-3.0Ag-0.5Cu lead-free solder with Cu electroplated Ni layer wire were investigated. The electromigration effects on the solder joints were studied after current density stressing at 1 x 103 A/cm2 in room temperature for 0 h, 120 h, and 240 h. The research work found that intermetallic compound (IMC) formation on the joint is increases for both solders with longer period of current stress applied. Higher IMC thickness growth in 99.3Sn-0.7Cu solder joint compared to 99.3Sn-0.7Cu is detected and both anode regions of the solder joints show higher IMC thickness growth compared to cathode region. Experimental results show 99.3Sn-0.7Cu solder joint is more prone to failure under current stress compared to 96.5Sn-3.0Ag-0.5Cu solder joint with thicker IMC which translates to higher brittleness.


2018 ◽  
Vol 30 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Fakhrozi Che Ani ◽  
Azman Jalar ◽  
Abdullah Aziz Saad ◽  
Chu Yee Khor ◽  
Roslina Ismail ◽  
...  

Purpose This paper aims to investigate the characteristics of ultra-fine lead-free solder joints reinforced with TiO2 nanoparticles in an electronic assembly. Design/methodology/approach This study focused on the microstructure and quality of solder joints. Various percentages of TiO2 nanoparticles were mixed with a lead-free Sn-3.5Ag-0.7Cu solder paste. This new form of nano-reinforced lead-free solder paste was used to assemble a miniature package consisting of an ultra-fine capacitor on a printed circuit board by means of a reflow soldering process. The microstructure and the fillet height were investigated using a focused ion beam, a high-resolution transmission electron microscope system equipped with an energy dispersive X-ray spectrometer (EDS), and a field emission scanning electron microscope coupled with an EDS and X-ray diffraction machine. Findings The experimental results revealed that the intermetallic compound with the lowest thickness was produced by the nano-reinforced solder with a TiO2 content of 0.05 Wt.%. Increasing the TiO2 content to 0.15 Wt.% led to an improvement in the fillet height. The characteristics of the solder joint fulfilled the reliability requirements of the IPC standards. Practical implications This study provides engineers with a profound understanding of the characteristics of ultra-fine nano-reinforced solder joint packages in the microelectronics industry. Originality/value The findings are expected to provide proper guidelines and references with regard to the manufacture of miniaturized electronic packages. This study also explored the effects of TiO2 on the microstructure and the fillet height of ultra-fine capacitors.


Author(s):  
N. Islam ◽  
J. C. Suhling ◽  
P. Lall ◽  
T. Shete ◽  
H. S. Gale ◽  
...  

In this study, we have examined the thermal cycling reliability of several lead free chip resistor solder joint configurations. Five sizes of resistors (2512, 1206, 0805, 0603, 0402), 2 temperature ranges (−40 to 125°C and −40 to 150°C), and five different solder types have been examined. The solders include the normal SnAgCu alloy recommended by earlier studies (95.5Sn-3.8Ag-0.7Cu), and several variations that include small percentages of Bismuth and Indium to enhance fatigue resistance. Results have been compared to data for standard 63Sn-37Pb joints.


Author(s):  
Debabrata Mondal ◽  
Abdullah Fahim ◽  
KM Rafidh Hassan ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Abstract Lead-free solder joints are the most widely used interconnects in electronic packaging industries. Usually solder joints in most of the electronic devices are exposed to an environment where variation of temperature exists, which indicates cyclic thermal loading to be a very common type of external loading. Moreover, due to difference in the coefficient of thermal expansion (CTE) among dissimilar contact materials, shear stress develops in junctions under thermal loading, which significantly deteriorates the overall reliability. Hence, characterization of lead-free solder materials under thermal loading is essential to predict the performance and deformation behavior of joints in practical applications. A significant portion of the studies in this field are concerned with thermal loading of lead-free solder interconnects, each of which has a very small diameter, in sub-millimeter range. Although the solder balls have very small dimensions, most of the analyses considered them as a bulk material with homogeneous and isotropic properties. However, with the decrease of specimen dimensions, size effects and material directionality play a significant role in deformation mechanisms. Since a very few grains exist in a small specimen, individual grain properties play a vital role on overall material response. Therefore, modeling from the grain structure and orientation point of view could be an effective and more accurate way to predict solder joint deformation behavior under thermal loading. In this study, the effect of grain size and orientation of SAC305 is investigated for predicting anisotropic behavior of solder joints under thermal load. A simplified three-dimensional model of beach-ball configuration solder joint was generated and simulated using ABAQUS finite element (FE) software. Experimentally obtained directional properties such as elastic modulus and CTE were assigned to the computational geometry to create material anisotropy. The effects of material anisotropy were studied for varying grain size specimens, as well as for specimens with varying grain orientation.


Author(s):  
Takahiro Akutsu ◽  
Qiang Yu

This paper presents the influence of the micro structure on the crack propagation in lead free solder joint. The author’s group have studied the Manson-Coffin’s law for lead free solder joint by using the isothermal fatigue test and FEM analytical approaches to establish the practicable evaluation of thermal fatigue life of solder joints, for example, for the Sn-Cu-Ni solder, because this solder is attracted from the aspect of the decrease of solder leach in the flow process and material cost. However, even if the same loading is given to the solder joints of BGA test piece, there was a large dispersion in the fatigue life. Even though the effect of the shape difference has been considered, the range of the dispersion could not been explained sufficiently. In the study, the fatigue crack propagation modes in the solder joints were investigated, and an internal fatigue crack mode and an interfacial fatigue crack mode were confirmed. And the tendency of a shorter on fatigue life in the interfacial fatigue mode was confirmed. To clarify the mechanism of these fatigue crack modes, the crystal grain size in the solder joints was investigated before the fatigue test and also after the test. Furthermore, the verification of the mechanism using FEM models considering the crystal grain size was carried out. First of all, each element in FEM models matching to the average crystal grain size was made. Second, the inelastic strain ranges in each FEM models were studied. As a result, it was shown that the influence of the crude density of the crystal grain to the fatigue crack progress can be evaluated. In addition, the micro structure of the solder joint of large-scale electronic devices is observed, and FEM model was made based on the observation result. As a result, it was shown that the influence of the directionality with the crystal grain to the fatigue crack progress can be evaluated.


Author(s):  
Hirokazu Oriyama ◽  
Takashi Kawakami ◽  
Takahiro Kinoshita

Sn-Ag-Cu solder materials have been widely used for the mount process of electronics devices or semiconductor packages on print circuit board (PCB). The solder joints are sometimes opened under thermal cyclic loads as low cycle fatigue phenomenon. The fatigue life of solder joint has been investigated by many researchers with experimental and numerical methods. Generally, the induced thermal stress in solder joints should be relaxed as soon and creep damage is considered to be ignored in order to estimate lives of joints. However, it is probable that long term stress is applied to solder joints by the elastic follow-up phenomenon which are depending on the stiffness ratio between solder joints and the electronics device, because the elastic strain in PCB or the electronics device shifts to creep strain in solder joints gradually during a long time. Then the creep damage of solder joint should be counted for the mechanical design of mounted PCBs. And it is known that the interaction between creep damage and fatigue damage significantly shorten the life. In this study, it was discussed whether the interaction between fatigue damage and creep damage has to be considered or not for the mechanical design of the lead free solder joint with basic creep-fatigue tests at an elevated temperature.


2021 ◽  
Author(s):  
Imtiaz Ahmed Shaik

Currently in the electronics industry there is a desire to increase component reliability. Fatigue failure in solder joints is an important design consideration for electronic packaging. In through-hole components, fatigue failure of leads has been observed to antecede fatigue failure of solder joints. The main objective of the study for a solder joint in a plated-through-hole bearing the pin during the temperature cycle was to ascertain the thermo mechanical behavior and the dominant deformation mode. The Digital Speckle Correlation (DSC) technique, which is a computer vision technique, was applied for the measurement of solder joint deforamtion for a prescribed outlined temperature and time. The dimensions for the area of the solder joint under study were 21 by 21 um, located at the centre of the hole. And computation of averaged shear strains at 6 data points for this area was done. R Darveaux's constitutive model was applied for the data analysis such as the solder joint yields stress with respect to the time and temperature. On achieving the stress solution, the measured total strains were partitioned into elastic, plastic and creep terms separately and hence the creep strain was evaluated. From the analysis, it was found that the dominant deformation mode was shear deformation due to mismatch of coefficient of thermal expansion between pin and copper plating material of through-hole under thermal loading. And the dominant deformation mechanism was creep strain while stress started to relax at the end of ramp up and continued throughout the test and creep strain rate decreased during high temperature dwell. In Addition, the elastic strain was dominating during the initial stage of thermal cycle but later it was neglibible when compared to creep strain.


Sign in / Sign up

Export Citation Format

Share Document