Gene Expression Profiling Following Instillation of Diesel Exhaust Particles in Rat Lung: A First Study

2000 ◽  
Vol 6 (S2) ◽  
pp. 910-911
Author(s):  
Lucy Reynolds ◽  
Kelly BéruBé ◽  
Timothy Jones ◽  
Roy Richards

Epidemiological studies conducted first in the USA and later in the UK, suggest that a relationship exists between increased cardio-respiratory hospital admissions, morbidity and mortality rates and increases in PM10 concentrations. In urban environments, ultrafine diesel exhaust particles (DEP), accounts for 20-80 % by mass of the airborne PM10 arising from vehicular activities. In previous work, we used well characterised DEP as a surrogate for PM10 and examined its bioreactivity in vivo by assessing lung permeability, inflammation and epithelial cell markers in lavage fluid. Delivery of a single instillate of l mg DEP into the rat lung was not found to cause progressive damage but did produce a transient change in lung permeability. In the experiment described here, we instilled two different doses (control [NaCl], 0.25 and 1.25 mg) of DEP into the rat lung and assessed the responses using the methods described above with the addition of a new technique known as gene expression profiling.

2019 ◽  
Vol 129 (3) ◽  
pp. 245-255 ◽  
Author(s):  
Hyun Soo Kim ◽  
Byeong-Gon Kim ◽  
Sohyeon Park ◽  
Nahyun Kim ◽  
An-Soo Jang ◽  
...  

Objectives: Diesel exhaust particles (DEP)s are notorious ambient pollutants composed of a complex mixture of a carbon core and diverse chemical irritants. Several studies have demonstrated significant relationships between DEP exposure and serious nasal inflammatory response in vitro, but available information regarding underlying networks in terms of gene expression changes has not sufficiently explained potential mechanisms of DEP-induced nasal damage, especially in vivo. Methods: In the present study, we identified DEP-induced gene expression profiles under short-term and long-term exposure, and identified signaling pathways based on microarray data for understanding effects of DEP exposure in the mouse nasal cavity. Results: Alteration in gene expression due to DEP exposure provokes an imbalance of the immune system via dysregulated inflammatory markers, predicted to disrupt protective responses against harmful exogenous substances in the body. Several candidate markers were identified after validation using qRT-PCR, including S100A9, CAMP, IL20, and S100A8. Conclusions: Although further mechanistic studies are required for verifying the utility of the potential biomarkers suggested by the present study, our in vivo results may provide meaningful suggestions for understanding the complex cellular signaling pathways involved in DEP-induced nasal damages.


2004 ◽  
Vol 20 (3) ◽  
pp. 129-137 ◽  
Author(s):  
Claes D. Enk ◽  
Iris Shahar ◽  
Ninette Amariglio ◽  
Gideon Rechavi ◽  
Naftali Kaminski ◽  
...  

2007 ◽  
Vol 22 (1) ◽  
pp. 58-63 ◽  
Author(s):  
Tetsuya Mori ◽  
Taro Watanuki ◽  
Tadashi Kashiwagura

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e102597 ◽  
Author(s):  
Anna Thorfve ◽  
Anna Bergstrand ◽  
Karin Ekström ◽  
Anders Lindahl ◽  
Peter Thomsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document