The Role of Atomic Scale Investigation in the Development of Nanoscale Materials for Information Storage Applications

2004 ◽  
Vol 10 (3) ◽  
pp. 366-372 ◽  
Author(s):  
A.K. Petford-Long ◽  
D.J. Larson ◽  
A. Cerezo ◽  
X. Portier ◽  
P. Shang ◽  
...  

It is well established that the response of devices based on the giant magnetoresistance (GMR) effect depends critically on film microstructure, with parameters such as interfacial abruptness, the roughness and waviness of the layers, and grain size being crucial. Such devices have applications in information storage systems, and are therefore of great technological interest as well as being of fundamental scientific interest. The layers must be studied at high spatial resolution if the microstructural parameters are to be characterized with sufficient detail to enable the effects of fabrication conditions on properties to be understood, and the techniques of high resolution electron microscopy, transmission electron microscopy chemical mapping, and atom probe microanalysis are ideally suited. This article describes the application of these techniques to a range of materials including spin valves, spin tunnel junctions, and GMR multilayers.

Author(s):  
David J. Smith

The era of atomic-resolution electron microscopy has finally arrived. In virtually all inorganic materials, including oxides, metals, semiconductors and ceramics, it is possible to image individual atomic columns in low-index zone-axis projections. A whole host of important materials’ problems involving defects and departures from nonstoichiometry on the atomic scale are waiting to be tackled by the new generation of intermediate voltage (300-400keV) electron microscopes. In this review, some existing problems and limitations associated with imaging inorganic materials are briefly discussed. The more immediate problems encountered with organic and biological materials are considered elsewhere.Microscope resolution. It is less than a decade since the state-of-the-art, commercially available TEM was a 200kV instrument with a spherical aberration coefficient of 1.2mm, and an interpretable resolution limit (ie. first zero crossover of the contrast transfer function) of 2.5A.


Author(s):  
Amanda K. Petford-Long ◽  
A. Cerezo ◽  
M.G. Hetherington

The fabrication of multilayer films (MLF) with layer thicknesses down to one monolayer has led to the development of materials with unique properties not found in bulk materials. The properties of interest depend critically on the structure and composition of the films, with the interfacial regions between the layers being of particular importance. There are a number of magnetic MLF systems based on Co, several of which have potential applications as perpendicular magnetic (e.g Co/Cr) or magneto-optic (e.g. Co/Pt) recording media. Of particular concern are the effects of parameters such as crystallographic texture and interface roughness, which are determined by the fabrication conditions, on magnetic properties and structure.In this study we have fabricated Co-based MLF by UHV thermal evaporation in the prechamber of an atom probe field-ion microscope (AP). The multilayers were deposited simultaneously onto cobalt field-ion specimens (for AP and position-sensitive atom probe (POSAP) microanalysis without exposure to atmosphere) and onto the flat (001) surface of oxidised silicon wafers (for subsequent study in cross-section using high-resolution electron microscopy (HREM) in a JEOL 4000EX. Deposi-tion was from W filaments loaded with material in the form of wire (Co, Fe, Ni, Pt and Au) or flakes (Cr). The base pressure in the chamber was around 8×10−8 torr during deposition with a typical deposition rate of 0.05 - 0.2nm/s.


1986 ◽  
Vol 77 ◽  
Author(s):  
Mary Beth Stearns ◽  
Amanda K. Petford-Long ◽  
C.-H. Chang ◽  
D. G. Stearns ◽  
N. M. Ceglio ◽  
...  

ABSTRACTThe technique of high resolution electron microscopy has been used to examine the structure of several multilayer systems (MLS) on an atomic scale. Mo/Si multilayers, in use in a number of x-ray optical element applications, and Mo/Si multilayers, of interest because of their magnetic properties, have been imaged in cross-section. Layer thicknesses, flatness and smoothness have been analysed: the layer width can vary by up to 0.6nm from the average value, and the layer flatness depends on the quality of the substrate surface for amorphous MLS, and on the details of the crystalline growth for the crystalline materials. The degree of crystallinity and the crystal orientation within the layers have also been investigated. In both cases, the high-Z layers are predominantly crystalline and the Si layers appear amorphous. Amorphous interfacial regions are visible between the Mo and Si layers, and crystalline cobalt suicide interfacial regions between the Co and Si layers. Using the structural measurements obtained from the HREM results, theoretical x-ray reflectivity behaviour has been calculated. It fits the experimental data very well.


MRS Bulletin ◽  
1997 ◽  
Vol 22 (8) ◽  
pp. 49-52 ◽  
Author(s):  
U. Dahmen ◽  
E. Johnson ◽  
S.Q. Xiao ◽  
A. Johansen

The behavior of solids in the nanometer size regime, as their dimensions approach the atomic scale, is of increasing fundamental and applied interest in materials research. Electronic, optical, magnetic, mechanical, or thermodynamic properties all may depend on the size and shape of the solid. As a result, in the nanoscale regime, size and shape may be used as design variables to tailor a material's properties such as giant magnetoresistance in multilayer films, or the optical properties in semiconductor nanocrystals. In most cases, the size dependence of properties is not well-understood. Nanophase materials constitute a new frontier in materials science, and accurate nanoscale characterization is extremely important in exploring this new frontier. In this area, transmission electron microscopy (TEM) plays a key role. Because of its unique ability to provide information on the structure and composition of internal interfaces in solids, TEM is particularly important in cases of buried nanophase structures such as small solid inclusions—that is, solid particles embedded within another solid.Nanoscale inclusions have recently been shown to exhibit unusual melting behavior that depends strongly on their size and the embedding matrix. For example, small inclusions of Pb in SiO exhibit melting-point depressions of several hundred degrees, whereas similarsized Pb inclusions in aluminum have shown large increases in melting point. Although a full understanding of these effects is still lacking, it appears that they are related not just to inclusion size but also to their shape and interface structure.


1989 ◽  
Vol 159 ◽  
Author(s):  
A. Catana ◽  
M. Heintze ◽  
P.E. Schmid ◽  
P. Stadelmann

ABSTRACTHigh Resolution Electron Microscopy (HREM) was used to study microstructural changes related to the CoSi/Si-CoSi/CoSi2/Si-CoSi2/Si transformations. CoSi is found to grow epitaxially on Si with [111]Si // [111]CoSi and < 110 >Si // < 112 >CoSi. Two CoSi non-equivalent orientations (rotated by 180° around the substrate normal) can occur in this plane. They can be clearly distinguished by HRTEM on cross-sections ( electron beam along [110]Si). At about 500°C CoSi transforms to CoSi2. Experimental results show that the type B orientation relationship satisfying [110]Si // [112]CoSi is preserved after the initial stage of CoSi2 formation. At this stage an epitaxial CoSi/CoSi2/Si(111) system is obtained. The atomic scale investigation of the CoSi2/Si interface shows that a 7-fold coordination of the cobalt atoms is observed in both type A and type B epitaxies.


1990 ◽  
Vol 202 ◽  
Author(s):  
A. Catana ◽  
P.E. Schmid

ABSTRACTHigh Resolution Electron Microscopy (HREM) and image calculations are combined to study microstructural changes related to the CoSi/Si-CoSi/CoSi2/Si-CoSi2/Si transformations. The samples are prepared by UHV e-beam evaporation of Co layers (2 nm) followed by annealing at 300°C or 400°C. Cross-sectional observations at an atomic scale show that the silicidation of Co at the lower temperature yields epitaxial CoSi/Si domains such that [111]Si // [111]CoSi and <110>Si // <112>CoSi. At about 400°C CoSi2 nucleates at the CoSi/Si interface. During the early stages of this chemical reaction, an epitaxial CoSi/CoSi2/Si system is observed. The predominant orientation is such that (021) CoSi planes are parallel to (220) CoSi2 planes, the CoSi2/Si interface being of type B. The growth of CoSi2 is shown to proceed at the expense of both CoSi and Si.


1994 ◽  
Vol 332 ◽  
Author(s):  
David J. Smith ◽  
M.R. Mccartney

ABSTRACTStructural information on the atomic scale is readily accessible from thin samples using the technique of high-resolution electron microscopy. Electron micrographs recorded under well-defined operating conditions can be directly interpreted in terms of atomic arrangements around defects of interest such as dislocations and interfaces. Digital image recording with slow-scan CCD cameras and quantitative comparisons with image simulations based on structural models are starting to lead to improved accuracy and reliability in structure determinations. Techniques based upon holographic methods are utilizing the superior illumination coherence of the field emission electron source to enhance resolution beyond the conventional extended Scherzer limit. Innovative methods for combining image and diffraction pattern information are also leading to improved levels of resolution for periodic objects. Care is needed to ensure that electron irradiation damage and surface cleanliness do not impose unnecessary restrictions on the details that can be extracted from recorded micrographs. It is proposed that the complex wavefunction emerging from the exit-surface of the sample should be considered as a basis for comparing the differences between experimental micrographs and image simulations.


2009 ◽  
Vol 15 (1) ◽  
pp. 54-61 ◽  
Author(s):  
M.A. Mat Yajid ◽  
G. Möbus

AbstractWe examine chemical mapping of reaction phases in a Cu-Al multilayer system using low-loss electron energy loss spectroscopy spectrum imaging and image spectroscopy techniques. The sensitivity of the plasmon peak position and shape to various crystal structures and phases is exploited using postprocessing of spectra into second derivative plasmon maps and line scans. Analytical transmission electron microscopy is complemented by studies of the orientation relationship of the multilayer system using high-resolution electron microscopy of interfaces and selected area diffraction. The techniques have been applied to the Cu-Al multilayer sample and sharply bound epitaxial phases are found, before and after heat treatment.


Sign in / Sign up

Export Citation Format

Share Document