Atomic Force Microscopy of Removal of Dentin Smear Layers

2007 ◽  
Vol 13 (4) ◽  
pp. 245-250 ◽  
Author(s):  
Luiz Henrique Carvalho Batista ◽  
José Ginaldo da Silva Júnior ◽  
Milton Fernando Andrade Silva ◽  
Josealdo Tonholo

The regular periodontal practice of scaling and root planing produces a smear layer on the root surface that is detrimental to the readhesion of tissues during subsequent regeneration therapy. Although it has been demonstrated that gels containing the chelating agent ethylenediaminetetraacetic acid (EDTA) can assist in the removal of this contaminating layer, no quantitative method is yet available by which to evaluate the efficiency of the treatment. In this article, the power of atomic force microscopy (AFM) as a technique for monitoring and mapping the surfaces of dentinal roots is demonstrated. Roughness parameters of teeth that had been scaled and root planed were determined from AFM images acquired both before and after treatment with EDTA. The results confirmed that EDTA is an efficient cleaning agent and that dentinal samples free from a smear layer are significantly rougher than the same samples covered by a contaminating layer. AFM analysis is superior to alternative methods involving scanning electron microscopy because the same sample section can be analyzed many times, thus permitting it to be used as both the control and the treatment surface.

2013 ◽  
Vol 28 (2) ◽  
pp. 68-71 ◽  
Author(s):  
Thomas N. Blanton ◽  
Debasis Majumdar

In an effort to study an alternative approach to make graphene from graphene oxide (GO), exposure of GO to high-energy X-ray radiation has been performed. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) have been used to characterize GO before and after irradiation. Results indicate that GO exposed to high-energy radiation is converted to an amorphous carbon phase that is conductive.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Aires da Conceição Silva ◽  
Andréa Luzia Ferreira de Souza ◽  
Renata Antoun Simão ◽  
Luiz Fernando Brum Malta

The present work introduces a new procedure to obtain gold nanoparticles (AuNPs). AuNPs (77–213 nm) were obtained in the absence of any classical reducing agents in a medium containing Mg2+/Al3+layered double hydroxide (LDH) andN,N-dimethylformamide. XRD analysis showed the presence of crystalline phases of gold in the Au/LDH composite. The 2θvalues of peaks corresponding to the LDH interlayer distance indicated that metallic NPs were deposited on the surface of the material. Furthermore, atomic force microscopy (AFM) analysis showed that AuNPs tend to agglomerate in a nonclassical halter-like shape.


2009 ◽  
Vol 610-613 ◽  
pp. 175-178 ◽  
Author(s):  
Namsrai Javkhlantugs ◽  
Enkhbaatar Ankhbayar ◽  
Khishigjargal Tegshjargal ◽  
Damdin Enkhjargal ◽  
Chimed Ganzorig

The morphological surface change of untreated and treated fibers of the Mongolian goat cashmere was investigated by atomic force microscopy (AFM) at ambient conditions. The cuticle scale heights of the Mongolian goat cashmere fibers were measured by the AFM for the fibers before and after treatment. The experimental results showed that the difference between the fine structure of the cuticle and surface roughness of untreated and treated fibers. We found that the surface morphological change of the cashmere fibers was strongly degraded after the bleaching process.


2005 ◽  
Vol 49 (10) ◽  
pp. 4085-4092 ◽  
Author(s):  
M. Meincken ◽  
D. L. Holroyd ◽  
M. Rautenbach

ABSTRACT The influences of the antibacterial magainin 2 and PGLa from the African clawed frog (Xenopus laevis) and the hemolytic bee venom melittin on Escherichia coli as the target cell were studied by atomic force microscopy (AFM). Nanometer-scale images of the effects of the peptides on this gram-negative bacterium's cell envelope were obtained in situ without the use of fixing agents. These high-resolution AFM images of the surviving and intact target cells before and after peptide treatment showed distinct changes in cell envelope morphology as a consequence of peptide action. Although all three peptides are lytic to E. coli, it is clear from this AFM study that each peptide causes distinct morphological changes in the outer membrane and in some cases the inner membrane, probably as a consequence of different mechanisms of action.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Vladan Mirjanić ◽  
Đorđe Mirjanić

Bearing in mind that in the field of jaw orthopedics and related scientific fields, there are no scientific studies that use the most modern technology based on the Atomic Force Microscopy (AFM) to investigate the nanostructure of tooth enamel after etching with 37% orthophosphoric acid, in this paper we will use this method, which is currently the most reliable, to determine the degree of tooth damage after its etching in the process of fixing orthodontic brackets. Considering the fact that the degree of enamel damage after etching cannot be realistically comprehended by the method called ’network’, because in this way the damage cannot be seen three dimensionally (the depth of the damage), but only the damage in a single plane, a more precise analysis can be obtained with the application of the most contemporary method that we can apply in this case, and that is the application of AFM technology.


Sign in / Sign up

Export Citation Format

Share Document