scholarly journals Orientation Relationships in Al0.7CoCrFeNi High-Entropy Alloy

2017 ◽  
Vol 23 (5) ◽  
pp. 905-915 ◽  
Author(s):  
Leo T.H. de Jeer ◽  
Václav Ocelík ◽  
Jeff T.M. De Hosson

AbstractA detailed microstructural evaluation was executed on the crystallographic texture as well as the mechanisms for nucleation, phase transformation, and grain growth in a Al0.7CoCrFeNi high-entropy alloy. The microstructure and crystallographic orientations were characterized by electron backscatter diffraction, and the chemical composition variations by energy-dispersive X-ray spectroscopy. The cast Al0.7CoCrFeNi alloy started in the BCC phase and partially transformed into the FCC phase. It was found that the Pitsch orientation relationship (OR) dominates the nucleation mechanism of the FCC phase; however, deviations with respect to the Pitsch OR are observed and are attributed to the differently sized atoms forming an ordered B2 phase in the alloy causing lattice distortions. The dual phase BCC–FCC microstructure contains FCC Widmanstätten plates oriented parallel to the {110}BCC planes of the parent grain. It was found that the crystal orientation distribution after the BCC–FCC phase transformation is confined and is explained as a product of the governing mechanisms.

2021 ◽  
Vol 250 ◽  
pp. 03010
Author(s):  
Benjamin M. Morrow ◽  
Juan P. Escobedo-Diaz ◽  
David R. Jones ◽  
Carl P. Trujillo ◽  
Daniel T. Martinez ◽  
...  

Phase transformations play an important role in the mechanical behavior of materials subjected to extreme loading conditions. A series of shock-reshock experiments were fielded to determine whether the phase transitions in materials are significantly enhanced or inhibited by preexisting microstructural features. Polycrystalline zirconium samples were shock loaded using gas-gun plate impact and soft recovered to examine microstructure using electron backscatter diffraction (EBSD). Drive conditions were varied to study the (hcp) alpha to (hexagonal) omega solidsolid phase transformation. Recovered samples were then subjected to a second shock loading event to determine the change in material behavior as a function of pre-shock microstructure. Crystallography of phase fragments in the final microstructure showed that prior twinning (formed during the shock to a peak stress below the transition threshold) appeared to suppress omega formation/retention after reshock. Conversely, when a material was initially shocked into the omega phase field, retained-omega was not found to have a large impact on subsequent omega formation during reshock. This suggests that nucleation and growth of omega phase are important processes, and the relative activity of nucleation vs. growth processes is modified by a pre-existing substructure. Additionally, orientation relationships reveal a reverse transformation pathway (omega to alpha) dominates the final microstructure, suggesting significant grain growth in the omega phase field is possible even for dynamic timescales.


2021 ◽  
Vol 52 (5) ◽  
pp. 1679-1688
Author(s):  
J. P. Panda ◽  
P. Arya ◽  
K. Guruvidyathri ◽  
Ravikirana ◽  
B. S. Murty

Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 880 ◽  
Author(s):  
Ali Arab ◽  
Yansong Guo ◽  
Qiang Zhou ◽  
Pengwan Chen

High entropy alloys (HEAs) are usually fabricated using arc melting which has the disadvantages of diseconomy, and the limitations in the shape and size of final products. However, recently, quite a large amount of research has been carried out to find the fabrication techniques for HEAs with better properties such as mechanical alloying and rapid solidification. In this paper, an AlCoCrFeNi high entropy alloy was successfully fabricated by the shock consolidation technique. In this method, the starting powders were mixed by mechanical alloying and then the shock wave was imposed to the compacted powders by explosion. High levels of residual stress existed in samples fabricated by the shock consolidation method. Due to this, after fabrication of the sample, heat treatment was used to eliminate the residual stress and improve the mechanical properties. The microstructure of the samples before and after heat treatment were examined by XRD, SEM and electron backscatter diffraction (EBSD). The shock consolidated sample and sample with heat treatment both showed the nano-structure. After heat treatment the hardness of the sample was decreased from 715 HV to the 624 HV, however the failure strength increased, and as expected the ductility of the sample was improved after heat treatment.


2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Ruth Birch ◽  
Thomas Benjamin Britton

Materials with an allotropic phase transformation can form microstructures where grains have orientation relationships determined by the transformation history. These microstructures influence the final material properties. In zirconium alloys, there is a solid-state body-centred cubic (b.c.c.) to hexagonal close-packed (h.c.p.) phase transformation, where the crystal orientations of the h.c.p. phase can be related to the parent b.c.c. structure via the Burgers orientation relationship (BOR). In the present work, a reconstruction code, developed for steels and which uses a Markov chain clustering algorithm to analyse electron backscatter diffraction maps, is adapted and applied to the h.c.p./b.c.c. BOR. This algorithm is released as open-source code (via github, as ParentBOR). The algorithm enables new post-processing of the original and reconstructed data sets to analyse the variants of the h.c.p. α phase that are present and understand shared crystal planes and shared lattice directions within each parent β grain; it is anticipated that this will assist in understanding the transformation-related deformation properties of the final microstructure. Finally, the ParentBOR code is compared with recently released reconstruction codes implemented in MTEX to reveal differences and similarities in how the microstructure is described.


2006 ◽  
Vol 70 (4) ◽  
pp. 373-382 ◽  
Author(s):  
G. Nolze ◽  
G. Wagner ◽  
R. Saliwan Neumann ◽  
R. Skála ◽  
V. Geist

AbstractThe crystallographic orientation of carlsbergite (CrN) in the north Chile meteorite (hexahedrite) was investigated using electron backscatter diffraction and transmission electron microscopy. These studies examined the CrN crystals in the rhabdites (idiomorphic schreibersite) and in kamacite. It was found that the CrN crystals embedded in rhabdite show a number of different orientation relationships with the host crystals. These orientations can be explained based on the lattice dimensions of both coexisting crystalline materials. It was also found that both carlsbergite and kamacite are characterized by a high dislocation density (≥ l09 cm-2) while rhabdite is free of dislocations. It is supposed that in spite of the deformed metallic matrix, a general connection between the orientation relation of all the phases involved exists.


NANO ◽  
2018 ◽  
Vol 13 (09) ◽  
pp. 1850100 ◽  
Author(s):  
Rui-Feng Zhao ◽  
Bo Ren ◽  
Guo-Peng Zhang ◽  
Zhong-Xia Liu ◽  
Jian-Jian Zhang

The CrCuFeMnNi high entropy alloy (HEA) powder was synthesized by mechanical alloying. The effects of milling time and subsequent annealing on the structure evolution, thermostability and magnetic property were investigated. After 50[Formula: see text]h of milling, the CrCuFeMnNi HEA powder consisted of a major FCC phase and a small amount of BCC phase. The crystallite size and strain lattice of 50[Formula: see text]h-ball-milled CrCuFeMnNi HEA powder were 12[Formula: see text]nm and 1.02%, respectively. The powder exhibited refined morphology and excellent chemical homogeneity. The supersaturated solid solution structure of the as-milled HEA powder transformed into FCC1, FCC2, a small amount of BCC and [Formula: see text] phase in annealed state. Most of the BCC phase decomposed into FCC (mainly FCC2 phase) and [Formula: see text] phases, and the dynamic phase transition was almost in equilibrium at 900[Formula: see text]C. The saturated magnetization and coercivity force of the 50[Formula: see text]h-ball-milled CrCuFeMnNi HEA powder were respectively 16.1[Formula: see text]emu/g and 56.2[Formula: see text]Oe.


2019 ◽  
Vol 371 ◽  
pp. 389-394 ◽  
Author(s):  
Thomas Lindner ◽  
Martin Löbel ◽  
Benjamin Sattler ◽  
Thomas Lampke

2021 ◽  
Author(s):  
Olga Ageeva ◽  
Ge Bian ◽  
Gerlinde Habler ◽  
Rainer Abart

<p>Magnetite micro-inclusions in silicate minerals are important carriers of the remanent magnetization of rocks. Their shape orientation relationships (SOR) and crystallographic orientation relationships (COR) to the host crystal are of interest in the context of the bulk magnetic properties of the inclusion-host assemblage. We investigated the SOR and COR of magnetite (MT) micro-inclusions in plagioclase (PL) from oceanic gabbro using correlated optical microscopy, scanning electron microscopy, Electron backscatter diffraction analysis and Transmission electron microscopy.</p><p>In the mm-sized PL crystals of the investigated gabbros MT is present as equant, needle- and lath-shaped (sub)micrometer sized inclusions. More than 95% of the needle-shaped inclusions show SOR and specific COR to the plagioclase host. Most of the needles are elongated perpendicular to one of the MT{111} planes, which is aligned parallel to one of the (112), (1-12), (-312), (-3-12), (150), (1-50) or (100) planes of plagioclase. These inclusions are classified as “plane-normal type”. The needle elongation parallel to MT<111>, which is the easy direction of magnetization, ensures high magnetic susceptibility of these inclusions. The underlying formation mechanism is related to the parallel alignment of oxygen layers with similar lattice spacing across the MT-PL interfaces that are parallel to the elongation direction [1].</p><p>Apart from the SOR and the alignment of a MT{111} with one of the PL low index planes, the MT crystals rotate about the needle elongation direction. The rotation angles are statistically distributed with several maxima representing specific orientation relationships. In some cases one of the MT<001> axes is aligned with PL[14 10 7] or PL[-14 10 -7], which ensures that FeO<sub>6 </sub>octahedra of MT well fit into channels // [001] of PL, which are formed by six membered rings of SiO<sub>4</sub> and AlO<sub>4</sub> tetrahedra [2]. This COR is referred to as the “nucleation orientation” of magnetite with respect to PL. There are several other possibilities to fit FeO<sub>6</sub> octahedra into the [001] channels of PL, but the alignment stated above allows for the additional parallel alignment of one of the MT{111} with one of the above mentioned low index lattice planes of PL. MT crystals with one of these nucleation orientations can undergo directional growth to develop laths and needles. MT crystals with other nucleation orientations that do not allow for the parallel alignment of MT{111} with the above mentioned PL lattice planes, do not significantly grow and form the equant inclusions.</p><p>For some needles one or more of the MT{011} planes that are parallel to the needle elongation direction, are aligned with low-index planes of plagioclase such as PL (112), PL(150), PL(1-50) etc., and form MT facets. This situation corresponds to achievement of the best possible match between the two crystal lattices. This can either be generated during primary growth or during re-equilibration of the micro-inclusions and the plagioclase host.</p><p>Funding by RFBR project 18-55-14003 and Austrian Science fund (FWF): I 3998-N29 is acknowledged.</p><p>Reference</p><p>[1] Ageeva et al (2020) Contrib. Mineral. Petrol. 175(10), 1-16.</p><p>[2] Wenk et al (2011) Am. Min. 96, 1316-1324</p>


Sign in / Sign up

Export Citation Format

Share Document