scholarly journals Low Energy 500 eV Focused Argon Ion Beam Provided by Multi-Ions Species Plasma FIB for Material Science Sample Preparations

2021 ◽  
Vol 27 (S1) ◽  
pp. 20-22
Author(s):  
Chengge Jiao ◽  
Jeremy Graham ◽  
Xu Xu ◽  
Timothy Burnett ◽  
Brandon van Leer
1988 ◽  
Vol 100 ◽  
Author(s):  
E. J. Williams ◽  
E. G. Bithell ◽  
C. B. Boothroyd ◽  
W. M. Stobbs ◽  
R. J. Young ◽  
...  

ABSTRACTThe promotion of silicide reactions at the interface between silicon and a metal overlayer is described, the reactions being initiated by scanned ion beams. The relative effects of low and high energy Si+ and Si2+ beams are discussed and the results of subsequent annealing are compared with those seen when using low energy (5keV) argon ion beams. The implications for the writing of metallisation lines are also noted.


2000 ◽  
Vol 166 (1-4) ◽  
pp. 61-66
Author(s):  
E Pincík

2013 ◽  
Vol 432 (1-3) ◽  
pp. 444-449 ◽  
Author(s):  
Barakat A. Soliman ◽  
Moustafa M. Abdelrahman ◽  
Fatama W. Abdelsalam ◽  
Kamal A. Aly

1988 ◽  
Vol 128 ◽  
Author(s):  
Eric Chason ◽  
K. M. Horn ◽  
J. Y. Tsao ◽  
S. T. Picraux

ABSTRACTUsing in situ, real-time reflection high energy electron diffraction (RHEED), we have measured the evolution of Ge (001) surface morphology during simultaneous molecular beam epitaxy and Ar ion beam bombardment. Surprisingly, low-energy Ar ions during growth tend to smoothen the surface. Bombardment by the ion beam without growth roughens the surface, but the surface can be reversibly smoothened by restoring the growth beam. We have measured the effect of such “ion beam growth smoothening” above and below the critical temperature for intrinsic growth roughening. At all measured growth temperatures the surface initially smoothens, but below the critical roughening temperature the final surface morphology is rough whereas above this temperature the final morphology is smooth.


1983 ◽  
Vol 25 ◽  
Author(s):  
A. Climent ◽  
J.-S. Wang ◽  
S. J. Fonash

ABSTRACTThe dry etching technologies reactive ion etching (RIE) and ion beam etching (IBE) have both been shown to cause a damaged layer at silicon surfaces. It has been demonstrated that this damage can be annealed out or, alternatively, it can be passivated with low energy hydrogen implants from a Kaufman ion source. This study further explores the hydrogen passivation approach by focusing on the effect of hydrogen implantation on damage caused by argon ion beam etching. The lighter hydrogen ions are actually shown ta cause more extensive damage than the heavier argon ions. However, by using low-energy hydrogen implants all damage, that present from the Ar and that generated during the hydrogen implant, can be passivated.


2006 ◽  
Vol 55 (3) ◽  
pp. 1517
Author(s):  
Wang Sen ◽  
Yu Guo-Jun ◽  
Gong Jin-Long ◽  
Li Qin-Tao ◽  
Zhu De-Zhang ◽  
...  

Author(s):  
M. Spector ◽  
A. C. Brown

Ion beam etching and freeze fracture techniques were utilized in conjunction with scanning electron microscopy to study the ultrastructure of normal and diseased human hair. Topographical differences in the cuticular scale of normal and diseased hair were demonstrated in previous scanning electron microscope studies. In the present study, ion beam etching and freeze fracture techniques were utilized to reveal subsurface ultrastructural features of the cuticle and cortex.Samples of normal and diseased hair including monilethrix, pili torti, pili annulati, and hidrotic ectodermal dysplasia were cut from areas near the base of the hair. In preparation for ion beam etching, untreated hairs were mounted on conducting tape on a conducting silicon substrate. The hairs were ion beam etched by an 18 ky argon ion beam (5μA ion current) from an ETEC ion beam etching device. The ion beam was oriented perpendicular to the substrate. The specimen remained stationary in the beam for exposures of 6 to 8 minutes.


Author(s):  
O. Popoola ◽  
A.H. Heuer ◽  
P. Pirouz

The addition of fibres or particles (TiB2, SiC etc.) into TiAl intermetallic alloys could increase their toughness without compromising their good high temperature mechanical and chemical properties. This paper briefly discribes the microstructure developed by a TiAl/TiB2 composite material fabricated with the XD™ process and forged at 960°C.The specimens for transmission electron microscopy (TEM) were prepared in the usual way (i.e. diamond polishing and argon ion beam thinning) and examined on a JEOL 4000EX for microstucture and on a Philips 400T equipped with a SiLi detector for microanalyses.The matrix was predominantly γ (TiAl with L10 structure) and α2(TisAl with DO 19 structure) phases with various morphologies shown in figure 1.


Sign in / Sign up

Export Citation Format

Share Document