Evaluation of the impact of teaching on delineation variation during a virtual stereotactic ablative radiotherapy contouring workshop

Author(s):  
Finbar Slevin ◽  
Romélie Rieu ◽  
Matthew Beasley ◽  
Richard Speight ◽  
Katharine Aitken ◽  
...  

Abstract Introduction: Variation in delineation of target volumes/organs at risk (OARs) is well recognised in radiotherapy and may be reduced by several methods including teaching. We evaluated the impact of teaching on contouring variation for thoracic/pelvic stereotactic ablative radiotherapy (SABR) during a virtual contouring workshop. Materials and methods: Target volume/OAR contours produced by workshop participants for three cases were evaluated against reference contours using DICE similarity coefficient (DSC) and line domain error (LDE) metrics. Pre- and post-workshop DSC results were compared using Wilcoxon signed ranks test to determine the impact of teaching during the workshop. Results: Of 50 workshop participants, paired pre- and post-workshop contours were available for 21 (42%), 20 (40%) and 22 (44%) participants for primary lung cancer, pelvic bone metastasis and pelvic node metastasis cases, respectively. Statistically significant improvements post-workshop in median DSC and LDE results were observed for 6 (50%) and 7 (58%) of 12 structures, respectively, although the magnitude of DSC/LDE improvement was modest in most cases. An increase in median DSC post-workshop ≥0·05 was only observed for GTVbone, IGTVlung and SacralPlex, and reduction in median LDE > 1 mm was only observed for GTVbone, CTVbone and SacralPlex. Post-workshop, median DSC values were >0·7 for 75% of structures. For 92% of the structures, post-workshop contours were considered to be acceptable or within acceptable variation following review by the workshop faculty. Conclusions: This study has demonstrated that virtual SABR contouring training is feasible and was associated with some improvements in contouring variation for multiple target volumes/OARs.

2019 ◽  
Vol 46 (6) ◽  
pp. E9 ◽  
Author(s):  
Güliz Acker ◽  
Anne Kluge ◽  
Mathias Lukas ◽  
Alfredo Conti ◽  
Diana Pasemann ◽  
...  

OBJECTIVEFor stereotactic radiosurgery (SRS) planning, precise contouring of tumor boundaries and organs at risk is of utmost importance. Correct interpretation of standard neuroimaging (i.e., CT and MRI) can be challenging after previous surgeries or in cases of skull base lesions with complex shapes. The aim of this study was to evaluate the impact of 68Ga-DOTATOC PET/MRI on treatment planning for image-guided SRS by CyberKnife.METHODSThe authors retrospectively identified 11 meningioma treatments in 10 patients who received a 68Ga-DOTATOC PET/MRI prior to SRS. The planning target volume (PTV) used for the patients’ treatment was defined as the reference standard. This was contoured by a treating radiosurgeon (RS0) using fused planning CT and PET/MRI data sets. The same tumors were then contoured by another experienced radiosurgeon (RS1) and by a less-experienced radiosurgeon (RS2), both blinded to PET data sets. A comparison of target volumes with focus on volume-based metrics and distance to critical structures was performed. RS1 and RS2 also filled in a questionnaire analyzing the confidence level and the subjective need for the implementation of PET data sets for contouring.RESULTSAnalysis showed a subjective personal preference for PET/MRI in all cases for both radiosurgeons, particularly in proximity to critical structures. The analysis of the planning volumes per physician showed significantly smaller RS2-PTV in comparison to RS1-PTV and to RS0-PTV, whereas the median volumes were comparable between RS1-PTV and RS2-PTV (median: RS0: 4.3 cm3 [IQR 3.4–6.5 cm3] and RS1: 4.5 cm3 [IQR 2.7–6 cm3] vs RS2: 2.6 cm3 [IQR 2–5 cm3]; p = 0.003). This was also reflected in the best spatial congruency between the 2 experienced physicians (RS0 and RS1). The percentage of the left-out volume contoured by RS1 and RS2 compared to RS0 with PET/MRI demonstrated a relevant left-out-volume portion in both cases with greater extent for the less-experienced radiosurgeon (RS2) (RS1: 19.1% [IQR 8.5%–22%] vs RS2: 40.2% [IQR 34.2%–53%]). No significant differences were detected regarding investigated critical structures.CONCLUSIONSThis study demonstrated a relevant impact of PET/MRI on target volume delineation of meningiomas. The extent was highly dependent on the experience of the treating physician. This preliminary study supports the relevance of 68Ga-DOTATOC PET/MRI as a tool for radiosurgical treatment planning of meningiomas.


2022 ◽  
Author(s):  
Jing Shen ◽  
Yinjie TAO ◽  
Hui GUAN ◽  
Hongnan ZHEN ◽  
Lei HE ◽  
...  

Abstract Purpose Clinical target volumes (CTV) and organs at risk (OAR) could be auto-contoured to save workload. The goal of this study was to assess a convolutional neural network (CNN) for totally automatic and accurate CTV and OAR in prostate cancer, while also comparing anticipated treatment plans based on auto-contouring CTV to clinical plans. Methods From January 2013 to January 2019, 217 computed tomography (CT) scans of patients with locally advanced prostate cancer treated at our hospital were collected and analyzed. CTV and OAR were delineated with a deep learning based method, which named CUNet. The performance of this strategy was evaluated using the mean Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (95HD), and subjective evaluation. Treatment plans were graded using predetermined evaluation criteria, and % errors for clinical doses to the planned target volume (PTV) and organs at risk(OARs) were calculated. Results The defined CTVs had mean DSC and 95HD values of 0.84 and 5.04 mm, respectively. For one patient's CT scans, the average delineation time was less than 15 seconds. When CTV outlines from CUNetwere blindly chosen and compared to GT, the overall positive rate in clinicians A and B was 53.15% vs 46.85%, and 54.05% vs 45.95%, respectively (P>0.05), demonstrating that our deep machine learning model performed as good as or better than human demarcation Furthermore, 8 testing patients were chosen at random to design the predicted plan based on the auto-courtoring CTV and OAR, demonstrating acceptable agreement with the clinical plan: average absolute dose differences of D2, D50, D98, Dmean for PTV are within 0.74%, and average absolute volume differences of V45, V50 for OARs are within 3.4%. Without statistical significance (p>0.05), the projected findings are comparable to clinical truth. Conclusion The experimental results show that the CTV and OARs defined by CUNet for prostate cancer were quite close to the ground reality.CUNet has the potential to cut radiation oncologists' contouring time in half. When compared to clinical plans, the differences between estimated doses to CTV and OAR based on auto-courtoring were small, with no statistical significance, indicating that treatment planning for prostate cancer based on auto-courtoring has potential.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 2017-2017
Author(s):  
Susannah G. Yovino ◽  
Stuart A. Grossman ◽  
Lawrence Kleinberg ◽  
Eric C Ford

2017 Background: Severe treatment-related lymphopenia (TRL) occurs in 40% of glioblastoma patients despite minimal radiation (RT) doses to bone marrow or nodal sites. In glioblastoma, TRL is associated with decreased survival. To explain the lymphopenia, we sought to estimate radiation doses received by circulating lymphocytes during partial brain RT. Methods: An in-house computer program linked to treatment planning software was used to calculate the mean radiation dose to circulating blood (DCB) and the fraction of blood receiving >0.5 Gy. The model also studied the impact of different target volumes (PTV), dose rates (DR), and delivery techniques (IMRT, 3D-CRT). Results: The mean DCB for a 60-Gy course (8-cm diameter PTV, dose rate 600 MU/minute) was 2.2 Gy. With this the entire blood pool receives a lymphotoxic dose of >0.5 Gy. DCB is correlated with fraction number, PTV size, and DR. Regardless of dose rate or delivery technique, the percent of circulating blood receiving >0.5 Gy approached 100% as the number of fractions increased. Changing dose rate had minimal effects on mean DCB (3.1Gy for 300 MU/min vs 2.2 Gy for 1200 MU/min). Smaller PTV size reduced the percent of blood receiving >0.5 Gy (15% for 2-cm diameter PTV vs 100% for 8-cm PTV). Conclusions: Standard RT for brain tumors delivers a lymphotoxic radiation dose to circulating blood. Altering dose rate may initially affect DCB, but advantages disappear over the course of 30 fractions. Marked reductions in target size appear to be the best way to avoid radiation injury to normal circulating lymphocytes. Other novel approaches are needed to limit radiation exposure to circulating lymphocytes given evidence associating lymphopenia with poorer outcomes in cancer patients.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e20091-e20091
Author(s):  
Fawzi Jamil Abuhijla ◽  
Lubna Abdelrahman Hammoudeh ◽  
Ramiz Ahmad Abu-Hijlih ◽  
Jamal Khader

e20091 Background: 4D CT simulation has been evolved to estimate the internal body motion and considered as a useful tool for intra-thoracic tumor definition. This study aimed to evaluate the impact of using 4D simulation on the planning target volume (PTV) for primary lung tumor. Methods: Patients who underwent CT simulation for primary lung cancer radiotherapy between 2012-2016 using 3D- (free breathing) and 4D- (respiratory gated) institutional protocol were included in this retrospective review. For each patient, gross tumor volume (GTV) was contoured in free breathing scan (3D-GTV), exhale scan (e-GTV) and inhale scan (i-GTV). The corresponding CTVs (3D-CTV, e-CTV and i-CTV) were created by adding 1 cm in all directions. 3D-internal target volume (3D-ITV) was generated by 0.5 cm cranio-caudal expansion of 3D-CTV, while 4D-ITV was created by combination of e-CTV and i-CTV. Subsequently, a 0.5 cm margin was added to generate the 3D-PTV and 4D-PTV respectively. The volumes of 3D-PTV and 4D-PTV were compared to examine the impact of 4D CT simulation on changes in the volume of PTV. Univariable and multivariable analysis were performed to test the impact of volume and location of GTV on the changes of PTV volume by more than 10 % between free breathing and respiratory gated scans. Results: A total of 10 patients were identified. The median [range] GTV, i-GTV, e-GTV volumes were 13.55 [1.44-628.66], 13.17 [1.77-627.36], 12.85 [1.34-630.25] cc respectively. The 3D-CTV, i-CTV, e-CTV volumes were 86.37 [23.76-1209], 84.97 [25.5- 1220.4], 83.40 [23.36-1224.12] cc respectively. 3D-ITV and 4D-ITV median volume was 106.06 [3.99-1422.8], 88.02 [20.51-1338.18] cc respectively. 3D-PTV was significantly larger than the 4D-PTV; median [range] volumes were 182.79 [58.65- 1861.05] vs. 158.21 [52.76-1771.02] cc, p = 0.0068). On multivariable analysis, neither the volume of GTV (p = 0.4917), nor the location of the tumor (peripheral, p = 0.4914 or lower location, p = 0.9594) had an in impact on PTV differences between free breathing and respiratory gated scans. Conclusions: The use of 4D simulation reduces the PTV for primary lung cancer, and it should be routinely implemented in clinical practice regardless the tumor volume or location.


Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 548
Author(s):  
Baptiste Pichon ◽  
Caroline Rousseau ◽  
Audrey Blanc-Lapierre ◽  
Gregory Delpon ◽  
Ludovic Ferrer ◽  
...  

(1) Background: Stereotactic body radiotherapy (SBRT) for vertebral metastases (VM) allows the delivery of high radiation doses to tumors while sparing the spinal cord. We report a new approach to clinical target volume (CTV) delineation based on anti-carcinoembryonic antigen (CEA) positron emission tomography (pretargeted immuno-PET; “iPET”) in patients with metastatic breast cancer (BC) or medullary thyroid cancer (MTC). (2) Methods: All patients underwent iPET, spine magnetic resonance imaging (MRI), and positron emission tomography-computed tomography (PET-CT) using 18F-deoxyglucose (FDG) for BC or 18F-dihydroxy-phenylalanine (F-DOPA) for MTC. Vertebrae locations and vertebral segments of lesions were recorded and the impact on CTV delineation was evaluated. (3) Results: Forty-six VM eligible for SBRT following iPET were evaluated in eight patients (five BC, three MTC). Eighty-one vertebral segments were detected using MRI, 26 with FDG or F-DOPA PET/CT, and 70 using iPET. iPET was able to detect more lesions than MRI for vertebral bodies (44 vs. 34). iPET-based delineation modified MRI-based CTV in 70% (32/46) of cases. (4) Conclusion: iPET allows a precise mapping of affected VM segments, and adds complementary information to MRI in the definition of candidate volumes for VM SBRT. iPET may facilitate determining target volumes for treatment with stereotactic body radiotherapy in metastatic vertebral disease.


2016 ◽  
Vol 57 (6) ◽  
pp. 691-701 ◽  
Author(s):  
Iori Sumida ◽  
Hajime Yamaguchi ◽  
Indra J. Das ◽  
Hisao Kizaki ◽  
Keiko Aboshi ◽  
...  

Abstract The purpose of this study was to evaluate the impact of the motion interplay effect in early-stage left-sided breast cancer intensity-modulated radiation therapy (IMRT), incorporating the radiobiological gamma index (RGI). The IMRT dosimetry for various breathing amplitudes and cycles was investigated in 10 patients. The predicted dose was calculated using the convolution of segmented measured doses. The physical gamma index (PGI) of the planning target volume (PTV) and the organs at risk (OAR) was calculated by comparing the original with the predicted dose distributions. The RGI was calculated from the PGI using the tumor control probability (TCP) and the normal tissue complication probability (NTCP). The predicted mean dose and the generalized equivalent uniform dose (gEUD) to the target with various breathing amplitudes were lower than the original dose (P < 0.01). The predicted mean dose and gEUD to the OARs with motion were higher than for the original dose to the OARs (P < 0.01). However, the predicted data did not differ significantly between the various breathing cycles for either the PTV or the OARs. The mean RGI gamma passing rate for the PTV was higher than that for the PGI (P < 0.01), and for OARs, the RGI values were higher than those for the PGI (P < 0.01). The gamma passing rates of the RGI for the target and the OARs other than the contralateral lung differed significantly from those of the PGI under organ motion. Provided an NTCP value <0.05 is considered acceptable, it may be possible, by taking breathing motion into consideration, to escalate the dose to achieve the PTV coverage without compromising the TCP.


Sign in / Sign up

Export Citation Format

Share Document