scholarly journals Regulation of E-cadherin

2005 ◽  
Vol 8 (3) ◽  
Author(s):  
Z. Yang ◽  
H. Zhang ◽  
R. Kumar

Numerous studies suggest that loss of E-cadherin is necessary to induce Epithelial–mesenchymal transition (EMT) and metastasis. Snail is a major contributor to EMTs. The Snail family of zinc-finger transcription factors interact with the E-cadherin promoter to repress transcription during EMT. The present article reviews the regulation of E-cadherin and discusses recent novel insights into the molecular basis in the process of EMT.

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Yawei Wang ◽  
Yingying Sun ◽  
Chao Shang ◽  
Lili Chen ◽  
Hongyu Chen ◽  
...  

AbstractRing1b is a core subunit of polycomb repressive complex 1 (PRC1) and is essential in several high-risk cancers. However, the epigenetic mechanism of Ring1b underlying breast cancer malignancy is poorly understood. In this study, we showed increased expression of Ring1b promoted metastasis by weakening cell–cell adhesions of breast cancer cells. We confirmed that Ring1b could downregulate E-cadherin and contributed to an epigenetic rewiring via PRC1-dependent function by forming distinct complexes with DEAD-box RNA helicases (DDXs) or epithelial-mesenchymal transition transcription factors (EMT TFs) on site-specific loci of E-cadherin promoter. DDXs-Ring1b complexes moderately inhibited E-cadherin, which resulted in an early hybrid EMT state of epithelial cells, and EMT TFs-Ring1b complexes cooperated with DDXs-Ring1b complexes to further repress E-cadherin in mesenchymal-like cancer cells. Clinically, high expression of Ring1b with DDXs or EMT TFs predicted low levels of E-cadherin, metastatic behavior, and poor prognosis. These findings provide an epigenetic regulation mechanism of Ring1b complexes in E-cadherin expression. Ring1b complexes may be potential therapeutic targets and biomarkers for diagnosis and prognosis in invasion breast cancer.


2020 ◽  
Author(s):  
Atsuko Takada-Owada ◽  
Yumi Nozawa ◽  
Masato Onozaki ◽  
Shuhei Noda ◽  
Tsengelumaa Jamiyan ◽  
...  

Abstract BackgroundThe tumor transformation mechanism of a plasmacytoid urothelial carcinoma remains unexplained. We describe the case of a plasmacytoid urothelial carcinoma of the renal pelvis in which the expression of zinc finger E–box–binding homeobox 1 (ZEB1), a key nuclear transcription factor in an epithelial–mesenchymal transition, is involved in tumor transformation.Case presentationThe patient had a left nephrectomy with the clinical diagnosis of left pelvic renal cancer. The resected specimen showed that the tumor surface comprised a noninvasive papillary urothelial carcinoma with the carcinoma in situ, and the invasive area comprised a plasmacytoid urothelial carcinoma characterized by the presence of single dyscohesive malignant cells that resembled plasma cells in a loose myxoid stroma. The noninvasive urothelial carcinoma was positive for cytokeratin and E–cadherin, and negative for vimentin and ZEB1. In contrast, the invasive plasmacytoid urothelial carcinoma was positive for cytokeratin and also vimentin and ZEB1, and negative for E–cadherin. Additionally, this component was immunoreactive for CD138 and CD38 that are immunohistochemical markers for plasma cells.ConclusionWe suggest that ZEB1 is involved in the plasmacytoid transformation by repressing the E–cadherin in a plasmacytoid urothelial carcinoma.


2020 ◽  
Author(s):  
Atsuko Takada-Owada ◽  
Yumi Nozawa ◽  
Masato Onozaki ◽  
Shuhei Noda ◽  
Tsengelumaa Jamiyan ◽  
...  

Abstract BackgroundThe tumor transformation mechanism of a plasmacytoid urothelial carcinoma remains unexplained. We describe the case of a plasmacytoid urothelial carcinoma of the renal pelvis in which the expression of zinc finger E–box–binding homeobox 1 (ZEB1), a key nuclear transcription factor in an epithelial–mesenchymal transition, is involved in tumor transformation.Case presentationThe patient had a left nephrectomy with the clinical diagnosis of left pelvic renal cancer. The resected specimen showed that the tumor surface comprised a noninvasive papillary urothelial carcinoma with the carcinoma in situ, and the invasive area comprised a plasmacytoid urothelial carcinoma characterized by the presence of single dyscohesive malignant cells that resembled plasma cells in a loose myxoid stroma. The noninvasive urothelial carcinoma was positive for cytokeratin and E–cadherin, and negative for vimentin and ZEB1. In contrast, the invasive plasmacytoid urothelial carcinoma was positive for cytokeratin and also vimentin and ZEB1, and negative for E–cadherin. Additionally, this component was immunoreactive for CD138 and CD38 that are immunohistochemical markers for plasma cells.ConclusionWe suggest that ZEB1 is involved in the plasmacytoid transformation by repressing the E–cadherin in a plasmacytoid urothelial carcinoma.


2007 ◽  
Vol 18 (5) ◽  
pp. 1943-1952 ◽  
Author(s):  
Pascale Leroy ◽  
Keith E. Mostov

Transcription factors of the Snail family are key regulators of epithelial-mesenchymal transition (EMT). In many processes during development or disease, cells do not acquire all the characteristics associated with EMT, leading to what we refer to as partial EMT (p-EMT). However, little is known of the implications of the Snail transcription factors in processes that only involve a p-EMT. To assess this, we used the hepatocyte growth factor (HGF)-induced Madin-Darby canine kidney tubulogenesis system, which provides a three-dimensional culture model of a morphogenetic process including a p-EMT. We found that although Slug (Snail2) is highly and transitory up-regulated during the p-EMT phase of tubulogenesis, it is not a repressor of E-cadherin during this process. Using inducible knockdown of Slug, we demonstrate that Slug is not an inducer of cell movement and instead is required for survival during p-EMT. We conclude that in epithelial cells, promoting cell survival can be a primary function of Slug, rather than being acquired concomitantly with EMT.


2021 ◽  
Vol 10 (18) ◽  
pp. 4076
Author(s):  
Enke Baldini ◽  
Chiara Tuccilli ◽  
Daniele Pironi ◽  
Antonio Catania ◽  
Francesco Tartaglia ◽  
...  

The transcription factors involved in epithelial–mesenchymal transition (EMT-TFs) silence the genes expressed in epithelial cells (e.g., E-cadherin) while inducing those typical of mesenchymal cells (e.g., vimentin). The core set of EMT-TFs comprises Zeb1, Zeb2, Snail1, Snail2, and Twist1. To date, information concerning their expression profile and clinical utility during thyroid cancer (TC) progression is still incomplete. We evaluated the EMT-TF, E-cadherin, and vimentin mRNA levels in 95 papillary TC (PTC) and 12 anaplastic TC (ATC) tissues and correlated them with patients’ clinicopathological parameters. Afterwards, we corroborated our findings by analyzing the data provided by a case study of the TGCA network. Compared with normal tissues, the expression of E-cadherin was found reduced in PTC and more strongly in ATC, while the vimentin expression did not vary. Among the EMT-TFs analyzed, Twist1 seems to exert a prominent role in EMT, being significantly associated with a number of PTC high-risk clinicopathological features and upregulated in ATC. Nonetheless, in the multivariate analysis, none of the EMT-TFs displayed a prognostic value. These data suggest that TC progression is characterized by an incomplete EMT and that Twist1 may represent a valuable therapeutic target warranting further investigation for the treatment of more aggressive thyroid cancers.


2001 ◽  
Vol 21 (23) ◽  
pp. 8184-8188 ◽  
Author(s):  
Ethan A. Carver ◽  
Rulang Jiang ◽  
Yu Lan ◽  
Kathleen F. Oram ◽  
Thomas Gridley

ABSTRACT Snail family genes encode DNA binding zinc finger proteins that act as transcriptional repressors. Mouse embryos deficient for the Snail (Sna) gene exhibit defects in the formation of the mesoderm germ layer. In Sna −/− mutant embryos, a mesoderm layer forms and mesodermal marker genes are induced but the mutant mesoderm is morphologically abnormal. Lacunae form within the mesoderm layer of the mutant embryos, and cells lining these lacunae retain epithelial characteristics. These cells resemble a columnar epithelium and have apical-basal polarity, with microvilli along the apical surface and intercellular electron-dense adhesive junctions that resemble adherens junctions. E-cadherin expression is retained in the mesoderm of the Sna −/− embryos. These defects are strikingly similar to the gastrulation defects observed insnail-deficient Drosophila embryos, suggesting that the mechanism of repression of E-cadherin transcription by Snail family proteins may have been present in the metazoan ancestor of the arthropod and mammalian lineages.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2741
Author(s):  
Natalia Landeros ◽  
Pablo M. Santoro ◽  
Gonzalo Carrasco-Avino ◽  
Alejandro H. Corvalan

The diffuse-type of gastric cancer (DGC), molecularly associated with epithelial to mesenchymal transition (EMT), is increasing in incidence. Loss of E-cadherin expression is the hallmark of the EMT process and is largely due to the upregulation of the EMT-inducing transcription factors ZEB1/2, Snail, Slug, and Twist1/2. However, ncRNA, such as miRNA and lncRNAs, can also participate in the EMT process through the direct targeting of E-cadherin and other EMT-inducing transcription factors. Additionally, lncRNA can sponge the miRNA pool that targets these transcripts through competing endogenous RNA (ceRNA) networks. In this review, we focus on the role of ncRNA in the direct deregulation of E-cadherin, as well as EMT-inducing transcription factors. Based on the relevance of the ceRNA network hypothesis, and the lack of said networks in EMT, we performed a prediction analysis for all miRNAs and lncRNAs that target E-cadherin, as well as EMT-inducing transcription factors. This analysis resulted in novel predicted ceRNA networks for E-cadherin and EMT-inducing transcription factors (EMT-TFs), as well as the expansion of the molecular basis of the DGC.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Atsuko Takada-Owada ◽  
Yumi Nozawa ◽  
Masato Onozaki ◽  
Shuhei Noda ◽  
Tsengelmaa Jamiyan ◽  
...  

Abstract Background The tumor transformation mechanism of a plasmacytoid urothelial carcinoma remains unexplained. We describe the case of a plasmacytoid urothelial carcinoma of the renal pelvis in which the expression of zinc finger E–box–binding homeobox 1 (ZEB1), a key nuclear transcription factor in an epithelial–mesenchymal transition, is involved in tumor transformation. Case presentation The patient had a left nephrectomy with the clinical diagnosis of left pelvic renal cancer. The resected specimen showed that the tumor surface comprised a noninvasive papillary urothelial carcinoma with the carcinoma in situ, and the invasive area comprised a plasmacytoid urothelial carcinoma characterized by the presence of single dyscohesive malignant cells that resembled plasma cells in a loose myxoid stroma. The noninvasive urothelial carcinoma was positive for cytokeratin and E–cadherin, and negative for vimentin and ZEB1. In contrast, the invasive plasmacytoid urothelial carcinoma was positive for cytokeratin and also vimentin and ZEB1, and negative for E–cadherin. Additionally, this component was immunoreactive for CD138 and CD38 that are immunohistochemical markers for plasma cells. Conclusion We suggest that ZEB1 is involved in the plasmacytoid transformation by repressing the E–cadherin in a plasmacytoid urothelial carcinoma.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831770550 ◽  
Author(s):  
Kathrin Enderle-Ammour ◽  
Moritz Bader ◽  
Theresa Dorothee Ahrens ◽  
Kai Franke ◽  
Sylvia Timme ◽  
...  

In cancer biology, the architectural concept “form follows function” is reflected by cell morphology, migration, and epithelial–mesenchymal transition protein pattern. In vivo, features of epithelial–mesenchymal transition have been associated with tumor budding, which correlates significantly with patient outcome. Hereby, the majority of tumor buds are not truly detached but still connected to a major tumor mass. For detailed insights into the different tumor bud types and the process of tumor budding, we quantified tumor cells according to histomorphological and immunohistological epithelial–mesenchymal transition characteristics. Three-dimensional reconstruction from adenocarcinomas (pancreatic, colorectal, lung, and ductal breast cancers) was performed as published. Tumor cell morphology and epithelial–mesenchymal transition characteristics (represented by zinc finger E-box-binding homeobox 1 and E-Cadherin) were analyzed qualitatively and quantitatively in a three-dimensional context. Tumor buds were classified into main tumor mass, connected tumor bud, and isolated tumor bud. Cell morphology and epithelial–mesenchymal transition marker expression were assessed for each tumor cell. Epithelial–mesenchymal transition characteristics between isolated tumor bud and connected tumor bud demonstrated no significant differences or trends. Tumor cell count correlated significantly with epithelial–mesenchymal transition and histomorphological characteristics. Regression curve analysis revealed initially a loss of membranous E-Cadherin, followed by expression of cytoplasmic E-Cadherin and subsequent expression of nuclear zinc finger E-box-binding homeobox 1. Morphologic changes followed later in this sequence. Our data demonstrate that connected and isolated tumor buds are equal concerning immunohistochemical epithelial–mesenchymal transition characteristics and histomorphology. Our data also give an insight in the process of tumor budding. While there is a notion that the epithelial–mesenchymal transition zinc finger E-box-binding homeobox 1–E-Cadherin cascade is initiated by zinc finger E-box-binding homeobox 1, our results are contrary and outline other possible pathways influencing the regulation of E-Cadherin.


2013 ◽  
Vol 36 (4) ◽  
pp. 223 ◽  
Author(s):  
Weidong Zhao ◽  
Ying Zhou ◽  
Hanjie Xu ◽  
Yong Cheng ◽  
Beihua Kong

Purpose: Epithelial-mesenchymal transition (EMT) is crucial for tumor progression and metastasis. Snail family members, including Snail, Slug and Smuc, are the transcription factors that repress E-cadherin expression and induce epithelial-mesenchymal transition in some tumor tissues. In this study, the expression of snail family proteins in cervical squamous cancers was evaluated. Methods: A series of 144 samples, comprising 28 cases of normal cervical tissues and 116 cases of squamous cell carcinoma (SCC), were used for analysis. The expression of Snail, Slug, Smuc, E-cadherin and vimentin was assessed in the tissues by immunohistochemistry and was statistically analyzed by SPSS13.0. Results: The increase in nuclear expression of snail and smuc was associated with down-regulation of E-cadherin and up-regulation of vimentin. The nuclear expression of Snail and Smuc was positively associated with lymph node metastasis of the SCC, and the nuclear expression of Snail was also positively related with histological differentiation. In contrast, tumor size, histological differentiation, lymph node metastasis and stages of the SCC were not associated with the expression of Slug, cytpolasmic Smuc or cytoplasm levels of Snail. Conclusion: Snail and Smuc proteins, but not Slug, may contribute to the onset of EMT in SCC. Inhibiting the expression of Snail and Smuc might be a potential therapeutic target for the treatment of metastasis and invasion of cervical carcinomas.


Sign in / Sign up

Export Citation Format

Share Document