scholarly journals Classical Absolute/Differential Programs

1986 ◽  
Vol 7 ◽  
pp. 77-80
Author(s):  
L V Morrison

In astronomy we try to determine a non-rotating frame from analyses of the observed motions of three mechanical systems – the solar system, the galaxy and the extragalactic nebulae. The rotation of the extragalactic frame is of the order 10-10 arcsec per century, so, for all practical purposes, this frame may be regarded as having no rotation. The other two frames are model-dependent and, as such, cannot be regarded ab initio as constituting non-rotation frames of reference. These reference frames are linked by various techniques, as shown in the diagram below.

Author(s):  
T. Pigoski ◽  
M. Griffis ◽  
J. Duffy

Abstract The stiffness mapping matrix for a planar compliant mechanism is analyzed using two different reference frames. The first is rigidly attached to the fixed body of the coupling, whilst the second is attached to the moving body of the coupling. It was found that, in general, these matrices are asymmetric when the coupling is loaded, and that one is the transpose of the other. This is an important result and can be considered an extension of the work done by Dimentberg[1], who derived a symmetrical stiffness mapping for an unloaded coupling. These new mappings are essential for the control of the coupling as it moves away from its unloaded position. Additionally, a third frame of reference which produces a symmetric mapping is examined and found to be identical to the Hessian matrix obtained from the second differentials of the elastic potential energy of the system. However, this symmetric mapping is not useful for control purposes and is only included to show that such a frame can be realized. Finally, static force loci for each of the reference frames are drawn to support the notion of frame-of-reference dependency.


2008 ◽  
Vol 4 (S257) ◽  
pp. 17-28 ◽  
Author(s):  
Peter Bochsler

AbstractThe Sun is by far the largest reservoir of matter in the solar system and contains more than 99% of the mass of the solar system. Theories on the formation of the solar system maintain that the gravitational collapse is very efficient and that typically not more than one tenth from the solar nebula is lost during the formation process. Consequently, the Sun can be considered as a representative sample of interstellar matter taken from a well mixed reservoir 4.6 Gy ago, at about 8 kpc from the galactic center. At the same time, the Sun is also a faithful witness of the composition of matter at the beginning of the evolution of the solar system and the formation of planets, asteroids, and comets. Knowledge on the solar composition and a fair account of the related uncertainties is relevant for many fields in astrophysics, planetary sciences, cosmo- and geochemistry. Apart from the basic interest in the chemical evolution of the galaxy and the solar system, compositional studies have also led to many applications in space research, i.e., it has helped to distinguish between different components of diffuse heliospheric matter. The elemental, isotopic, and charge state composition of heliospheric particles (solar wind, interstellar neutrals, pickup ions) has been used for a multitude of applications, such as tracing the source material, constraining parameters for models of the acceleration processes, and of the transport through the interplanetary medium. It is important to realize, that the two mainstream applications, as outlined above – geochemistry and cosmochemistry on one side, and tracing of heliospheric processes on the other side – are not independent of each other. Understanding the physical processes, e.g., of the fractionation of the solar wind, is crucial for the interpretation of compositional data; on the other hand, reliable information on the source composition is the basis for putting constraints on models of the solar wind fractionation.


2014 ◽  
Vol 111 (11) ◽  
pp. 2232-2243 ◽  
Author(s):  
Timothy J. Carroll ◽  
Eugene Poh ◽  
Aymar de Rugy

Humans can learn to make accurate movements when the required map between vision and motor commands changes, but can visuomotor maps obtained through experience with one limb benefit the other? Complete transfer would require new maps to be both fully compatible and accessible between limbs. However, when this question is addressed by providing subjects with rotated visual feedback during reaching, transfer is rarely apparent in the first few trials with the unpracticed limb and is sometimes absent altogether. Partial transfer might be explained by limited accessibility to remapped brain circuits, since critical visuomotor transformations mediating unilateral movements appear to be lateralized. Alternatively, if adaptation involves movement representations associated with both extrinsic (i.e., direction of motion in space) and intrinsic (i.e., joint or muscle based) frames of reference, new visuomotor maps might be incompatible with opposite limb use when visual distortions have opposite effects for the two limbs in intrinsic coordinates. Here we addressed this issue when subjects performed an isometric aiming task with the index finger. We manipulated the alignment of visuomotor distortion for the two hands in different reference frames by altering body posture relative to the orientation of the finger and the visual display. There was strong, immediate transfer of adaptation between limbs only when visuomotor distortion had identical effects in eye- and joint-based coordinates bilaterally. This implies that new visuomotor maps are encoded in neural circuits associated with both intrinsic and extrinsic movement representations and are available to both limbs.


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


2020 ◽  
Vol 15 (S359) ◽  
pp. 188-189
Author(s):  
Daniela Hiromi Okido ◽  
Cristina Furlanetto ◽  
Marina Trevisan ◽  
Mônica Tergolina

AbstractGalaxy groups offer an important perspective on how the large-scale structure of the Universe has formed and evolved, being great laboratories to study the impact of the environment on the evolution of galaxies. We aim to investigate the properties of a galaxy group that is gravitationally lensing HELMS18, a submillimeter galaxy at z = 2.39. We obtained multi-object spectroscopy data using Gemini-GMOS to investigate the stellar kinematics of the central galaxies, determine its members and obtain the mass, radius and the numerical density profile of this group. Our final goal is to build a complete description of this galaxy group. In this work we present an analysis of its two central galaxies: one is an active galaxy with z = 0.59852 ± 0.00007, while the other is a passive galaxy with z = 0.6027 ± 0.0002. Furthermore, the difference between the redshifts obtained using emission and absorption lines indicates an outflow of gas with velocity v = 278.0 ± 34.3 km/s relative to the galaxy.


2021 ◽  
Vol 31 (1) ◽  
pp. 1-44
Author(s):  
Andreas Eckart

AbstractWe study to what extent the Milky Way was used as an orientation tool at the beginning of the Islamic period covering the 8th to the 15th century, with a focus on the first half of that era. We compare the texts of three authors from three different periods and give detailed comments on their astronomical and traditional content. The text of al-Marzūqī summarises the information on the Milky Way put forward by the astronomer and geographer ʾAbū Ḥanīfa al-Dīnawarī. The text makes it clear that in some areas the Milky Way could be used as a geographical guide to determine the approximate direction toward a region on Earth or the direction of prayer. In the 15th century, the famous navigator Aḥmad b. Māǧid describes the Milky Way in his nautical instructions. He frequently demonstrates that the Milky Way serves as a guidance aid to find constellations and stars that are useful for precise navigation on land and at sea. On the other hand, Ibn Qutayba quotes in his description of the Milky Way a saying from the famous Bedouin poet Ḏū al-Rumma, which is also mentioned by al-Marzūqī. In this saying the Milky Way is used to indicate the hot summer times in which travelling the desert was particularly difficult. Hence, the Milky Way was useful for orientation in space and time and was used for agricultural and navigational purposes.


2014 ◽  
Vol 23 (01) ◽  
pp. 1450006 ◽  
Author(s):  
L. IORIO

Analytical expressions for the orbital precessions affecting the relative motion of the components of a local binary system induced by Lorentz-violating Preferred Frame Effects (PFE) are explicitly computed in terms of the Parametrized Post-Newtonian (PPN) parameters α1, α2. Preliminary constraints on α1, α2 are inferred from the latest determinations of the observationally admitted ranges [Formula: see text] for any anomalous Solar System planetary perihelion precessions. Other bounds existing in the literature are critically reviewed, with particular emphasis on the constraint [Formula: see text] based on an interpretation of the current close alignment of the Sun's equator with the invariable plane of the Solar System in terms of the action of a α2-induced torque throughout the entire Solar System's existence. Taken individually, the supplementary precessions [Formula: see text] of Earth and Mercury, recently determined with the INPOP10a ephemerides without modeling PFE, yield α1 = (0.8±4) × 10-6 and α2 = (4±6) × 10-6, respectively. A linear combination of the supplementary perihelion precessions of all the inner planets of the Solar System, able to remove the a priori bias of unmodeled/mismodeled standard effects such as the general relativistic Lense–Thirring precessions and the classical rates due to the Sun's oblateness J2, allows to infer α1 = (-1 ± 6) × 10-6, α2 = (-0.9 ± 3.5) × 10-5. Such figures are obtained by assuming that the ranges of values for the anomalous perihelion precessions are entirely due to the unmodeled effects of α1 and α2. Our bounds should be improved in the near-mid future with the MESSENGER and, especially, BepiColombo spacecrafts. Nonetheless, it is worthwhile noticing that our constraints are close to those predicted for BepiColombo in two independent studies. In further dedicated planetary analyses, PFE may be explicitly modeled to estimate α1, α2 simultaneously with the other PPN parameters as well.


2009 ◽  
Vol 5 (S268) ◽  
pp. 201-210
Author(s):  
Monique Spite ◽  
François Spite

AbstractThe nuclei of the lithium isotopes are fragile, easily destroyed, so that, at variance with most of the other elements, they cannot be formed in stars through steady hydrostatic nucleosynthesis.The 7Li isotope is synthesized during primordial nucleosynthesis in the first minutes after the Big Bang and later by cosmic rays, by novae and in pulsations of AGB stars (possibly also by the ν process). 6Li is mainly formed by cosmic rays. The oldest (most metal-deficient) warm galactic stars should retain the signature of these processes if, (as it had been often expected) lithium is not depleted in these stars. The existence of a “plateau” of the abundance of 7Li (and of its slope) in the warm metal-poor stars is discussed. At very low metallicity ([Fe/H] < −2.7dex) the star to star scatter increases significantly towards low Li abundances. The highest value of the lithium abundance in the early stellar matter of the Galaxy (logϵ(Li) = A(7Li) = 2.2 dex) is much lower than the the value (logϵ(Li) = 2.72) predicted by the standard Big Bang nucleosynthesis, according to the specifications found by the satellite WMAP. After gathering a homogeneous stellar sample, and analysing its behaviour, possible explanations of the disagreement between Big Bang and stellar abundances are discussed (including early astration and diffusion). On the other hand, possibilities of lower productions of 7Li in the standard and/or non-standard Big Bang nucleosyntheses are briefly evoked.A surprisingly high value (A(6Li)=0.8 dex) of the abundance of the 6Li isotope has been found in a few warm metal-poor stars. Such a high abundance of 6Li independent of the mean metallicity in the early Galaxy cannot be easily explained. But are we really observing 6Li?


2018 ◽  
Vol 10 (3) ◽  
pp. 494-513 ◽  
Author(s):  
ALI ALSHEHRI ◽  
JUERGEN BOHNEMEYER ◽  
RANDI MOORE ◽  
GABRIELA PÉREZ BÁEZ

abstractThis paper presents a cross-linguistic investigation of a constraint on the use on intrinsic frames of reference proposed by Levelt (1984, 1996). This proposed constraint claims that use of intrinsic frames when the ground object is in non-canonical position is blocked due to conflict with gravitational-based reference frames. Regression models of the data from Arabic, K’iche’, Spanish, Yucatec, and Zapotec suggest that this constraint is valid across languages. However, the strength at which the constraint operates is predicted by the frequency of canonical intrinsic frames in the particular language. The ratio of the incidence of intrinsic usage with canonical vs. non-canonical orientation appears to be remarkably uniform across languages, which suggests the possibility of a strong cognitive universal.


Sign in / Sign up

Export Citation Format

Share Document