scholarly journals Paradox of Flows on Mars

2005 ◽  
Vol 13 ◽  
pp. 918-920
Author(s):  
L.V. Ksanfomality

Using the high-resolution images acquired by cameras onboard the MARS GLOBAL SURVEYOR orbiter made it possible to reveal the previously unknown objects on the Martian surface, which changed dramatically a notion of Mars as a dry, hydrologically dead planet (Malin and Edgett, 2000). Examination of new images shows that the nature of some extended dark formations on the slopes of craters and uplands may be associated with contemporary abundant sources of liquid water arising on the slopes at small depths below the level of surrounding plains.

2021 ◽  
Vol 217 (6) ◽  
Author(s):  
Wei Yan ◽  
Jianjun Liu ◽  
Xin Ren ◽  
Chunlai Li ◽  
Qiang Fu ◽  
...  

AbstractHigh-resolution optical cameras have always been important scientific payloads in Mars exploration missions, which can obtain detailed images of Martian surface for the study of geomorphology, topography and geological structure. At present, there are still many challenges for Mars high-resolution images in terms of global coverage, stereo coverage (especially for colour images), and data processing methods. High Resolution Imaging Camera (HiRIC) is a high-quality, multi-mode, multi-functional, multi-spectral remote sensing camera that is suitable for the deep space developed for China’s first Mars Exploration Mission (Tianwen-1), which was successfully launched in July 2020. Here we design special experiments based on the in-orbit detection conditions of Tianwen-1 mission to comprehensively verify the detection capability and the performance of HiRIC, from the aspects of image motion compensation effect, focusing effect, image compression quality, and data preprocessing accuracy. The results showed that the performance status of HiRIC meets the requirements of obtaining high resolution images on the Martian surface. Furthermore, proposals for HiRIC in-orbit imaging strategy and data processing are discussed to ensure the acquisition of high-quality HiRIC images, which is expected to serve as a powerful complementation to the current Mars high-resolution images.


Author(s):  
Panagiotis Sidiropoulos ◽  
Jan-Peter Muller

Four NASA missions over the last forty years with onboard instruments for high-resolution orbital imaging have achieved both global coverage (with 6m CTX, 20m THEMIS-VIS and >8m Viking Orbiter cameras) as well as imaging with very high resolution in specific regions of interest (e.g. 25cm HiRISE and ≈1.5-12m MOC-NA cameras). Overall, this set of cameras have acquired more than 400,000 high-quality images of Mars with resolution between 25cm/pixel and 100m/pixel (Sidiropoulos and Muller, 2015). On the other hand, ESA has sent the only high-resolution stereo photogrammetric camera around Mars, HRSC onboard the Mars Express spacecraft, which has been mapping the Martian surface since 2004 with a resolution of 12.5 m/pixel (Jaumann et al., 2015). Initially the raw images are combined through an elaborate photogrammetric process to get (single-strip) 3D products (i.e. digital terrain models (DTMs) and derived orthorectified images (ORIs)). However, recently the processing chain has changed, and the single-strip product release was temporarily halted to be replaced by the production and release of mosaics of Mars quadrangles. The first product of this kind is the mosaic for the East part of quadrangle MC11 (i.e. the MC11-E mosaic), a product with 12.5 metres per pixel resolution in the panchromatic image and 50 metres per pixel resolution in the corresponding DTM (Gwinner et al., 2015). <br><br> Such a product provides an excellent basemap to co-register and orthorectify all NASA high-resolution (≤100m/pixel) orbital images. The need for this co-registration to HRSC comes from their poor areo-referencing, which often leads to large deviations (reaching up to several kilometres) between the area they are supposed to image and the area they are actually imaging. After co-registration, all products are projected onto an common 3D coordinate system, which allows an examination of dynamic features of Mars through the changes that happen on its surface. In this work, we present the results of the batch coregistration of all NASA high-resolution orbiter images of MC11-E, i.e. almost 8,000 images in total. This task was conducted with an in-house pipeline which was modified in order to handle the different parameters of the mosaic in comparison to single-strip HRSC products and to process the large input data volumes within a realistic time. An outline of the processing pipeline is given, along with examples of co-registered images and statistics of the co-registration performance. We demonstrate how such a time series representation of the surface will open up new areas for exploration and understanding of the Martian surface.


Author(s):  
Alfiah Rizky Diana Putri ◽  
Panagiotis Sidiropoulos ◽  
Jan-Peter Muller

The surface of Mars has been an object of interest for planetary research since the launch of Mariner 4 in 1964. Since then different cameras such as the Viking Visual Imaging Subsystem (VIS), Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), and Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) have been imaging its surface at ever higher resolution. The High Resolution Stereo Camera (HRSC) on board of the European Space Agency (ESA) Mars Express, has been imaging the Martian surface, since 25th December 2003 until the present-day. HRSC has covered 100 % of the surface of Mars, about 70 % of the surface with panchromatic images at 10-20 m/pixel, and about 98 % at better than 100 


Author(s):  
P. Sidiropoulos ◽  
J.-P. Muller

A meta-data analysis has been performed of high-resolution imagery that have been acquired over the last four decades from Mars. More specifically, we are interested in two independent image parameters, the time that each image was acquired and the spatial resolution with which the planetary region is mapped in the image. We are only interested in mapping changes in high-resolution images. We use two different upper thresholds to discriminate them from low-resolution images, twenty metres and a hundred metres per pixel. In order to be able to extract semantic information about the temporal and spatial distribution of high-resolution Martian imagery we adopt two grouping strategies. In the first, images are clustered according to the time period (counted in Martian Years) that they were acquired, so as to examine whether sporadic Martian phenomena can be identified (e.g. a new crater) from imagery that depict the same area in different time periods. In the second grouping, images are clustered according to the Martian season that they were acquired, so as to examine whether seasonal Martian phenomena can be identified from imagery that depict the same area during the same season. This analysis supports the hypothesis that there is sufficient coverage for both tasks, since the Martian surface has been mapped at least once in each epoch and more than twice since 2002 and for each season at least 10 % of Martian surface has been mapped at least three times. The resulting maps and graphical plots will be presented will provide additional detail to this report.


Author(s):  
Panagiotis Sidiropoulos ◽  
Jan-Peter Muller

Four NASA missions over the last forty years with onboard instruments for high-resolution orbital imaging have achieved both global coverage (with 6m CTX, 20m THEMIS-VIS and >8m Viking Orbiter cameras) as well as imaging with very high resolution in specific regions of interest (e.g. 25cm HiRISE and ≈1.5-12m MOC-NA cameras). Overall, this set of cameras have acquired more than 400,000 high-quality images of Mars with resolution between 25cm/pixel and 100m/pixel (Sidiropoulos and Muller, 2015). On the other hand, ESA has sent the only high-resolution stereo photogrammetric camera around Mars, HRSC onboard the Mars Express spacecraft, which has been mapping the Martian surface since 2004 with a resolution of 12.5 m/pixel (Jaumann et al., 2015). Initially the raw images are combined through an elaborate photogrammetric process to get (single-strip) 3D products (i.e. digital terrain models (DTMs) and derived orthorectified images (ORIs)). However, recently the processing chain has changed, and the single-strip product release was temporarily halted to be replaced by the production and release of mosaics of Mars quadrangles. The first product of this kind is the mosaic for the East part of quadrangle MC11 (i.e. the MC11-E mosaic), a product with 12.5 metres per pixel resolution in the panchromatic image and 50 metres per pixel resolution in the corresponding DTM (Gwinner et al., 2015). <br><br> Such a product provides an excellent basemap to co-register and orthorectify all NASA high-resolution (≤100m/pixel) orbital images. The need for this co-registration to HRSC comes from their poor areo-referencing, which often leads to large deviations (reaching up to several kilometres) between the area they are supposed to image and the area they are actually imaging. After co-registration, all products are projected onto an common 3D coordinate system, which allows an examination of dynamic features of Mars through the changes that happen on its surface. In this work, we present the results of the batch coregistration of all NASA high-resolution orbiter images of MC11-E, i.e. almost 8,000 images in total. This task was conducted with an in-house pipeline which was modified in order to handle the different parameters of the mosaic in comparison to single-strip HRSC products and to process the large input data volumes within a realistic time. An outline of the processing pipeline is given, along with examples of co-registered images and statistics of the co-registration performance. We demonstrate how such a time series representation of the surface will open up new areas for exploration and understanding of the Martian surface.


2002 ◽  
Vol 12 ◽  
pp. 631-635 ◽  
Author(s):  
Arden Albee

AbstractThe Mars Global Surveyor (MGS) spacecraft entered an elliptical orbit at Mars on September 11,1997. Until March 1999 it acquired scientific data from decreasing-sized orbits as it alternated between aerobraking and nadir-pointing modes. This time period provided tremendous advances in our knowledge of the shape and topography, the gravity field, the magnetic field, and the atmospheric structure and dynamics of Mars. In April 1999 MGS entered its planned two years in the mapping mode. In this mode the high-gain antenna tracks Earth so that the instruments can take data continuously and so that the camera system can return high-resolution data in real-time. IR spectral and temperature data, as well as high-resolution images are providing new insight into the geologic evolution of Mars. All data is being archived at about six month centers so that it is available in electronic format to the international community.


1994 ◽  
Vol 144 ◽  
pp. 541-547
Author(s):  
J. Sýkora ◽  
J. Rybák ◽  
P. Ambrož

AbstractHigh resolution images, obtained during July 11, 1991 total solar eclipse, allowed us to estimate the degree of solar corona polarization in the light of FeXIV 530.3 nm emission line and in the white light, as well. Very preliminary analysis reveals remarkable differences in the degree of polarization for both sets of data, particularly as for level of polarization and its distribution around the Sun’s limb.


Author(s):  
Etienne de Harven

Biological ultrastructures have been extensively studied with the scanning electron microscope (SEM) for the past 12 years mainly because this instrument offers accurate and reproducible high resolution images of cell shapes, provided the cells are dried in ways which will spare them the damage which would be caused by air drying. This can be achieved by several techniques among which the critical point drying technique of T. Anderson has been, by far, the most reproducibly successful. Many biologists, however, have been interpreting SEM micrographs in terms of an exclusive secondary electron imaging (SEI) process in which the resolution is primarily limited by the spot size of the primary incident beam. in fact, this is not the case since it appears that high resolution, even on uncoated samples, is probably compromised by the emission of secondary electrons of much more complex origin.When an incident primary electron beam interacts with the surface of most biological samples, a large percentage of the electrons penetrate below the surface of the exposed cells.


Author(s):  
S. Saito ◽  
H. Todokoro ◽  
S. Nomura ◽  
T. Komoda

Field emission scanning electron microscope (FESEM) features extremely high resolution images, and offers many valuable information. But, for a specimen which gives low contrast images, lateral stripes appear in images. These stripes are resulted from signal fluctuations caused by probe current noises. In order to obtain good images without stripes, the fluctuations should be less than 1%, especially for low contrast images. For this purpose, the authors realized a noise compensator, and applied this to the FESEM.Fig. 1 shows an outline of FESEM equipped with a noise compensator. Two apertures are provided gust under the field emission gun.


Author(s):  
David C. Joy ◽  
Dennis M. Maher

High-resolution images of the surface topography of solid specimens can be obtained using the low-loss technique of Wells. If the specimen is placed inside a lens of the condenser/objective type, then it has been shown that the lens itself can be used to collect and filter the low-loss electrons. Since the probeforming lenses in TEM instruments fitted with scanning attachments are of this type, low-loss imaging should be possible.High-resolution, low-loss images have been obtained in a JEOL JEM 100B fitted with a scanning attachment and a thermal, fieldemission gun. No modifications were made to the instrument, but a wedge-shaped, specimen holder was made to fit the side-entry, goniometer stage. Thus the specimen is oriented initially at a glancing angle of about 30° to the beam direction. The instrument is set up in the conventional manner for STEM operation with all the lenses, including the projector, excited.


Sign in / Sign up

Export Citation Format

Share Document