scholarly journals Heated-Tip AFM: Applications in Nanocomposite Polymer Membranes and Energetic Materials

2007 ◽  
Vol 15 (1) ◽  
pp. 20-25
Author(s):  
Jason P. Killgore ◽  
William King ◽  
Kevin Kjoller ◽  
René M. Overney

Atomic Force Microscopy (AFM) is a key technique for the measurement and analysis of samples when nanoscale topography is of interest. It offers a number of complementary probing modes that extend an AFM's measurement capability to a wide range of material and transport properties of surfaces, including hardness, friction, conductivity and adhesion among others. Sample temperature controlled AFM extends the study of surface morphology and properties to include changes in the material phases.Recently, silicon microfabricated AFM cantilevers that have integrated heaters, as shown in figure 1, have become commercially available. These cantilevers were initially developed for probe based data storage by researchers at IBM Zurich, Figure 1. With the availability of these cantilevers, AFM measurements can be performed where the tip is heated as opposed to the sample.

2012 ◽  
Vol 1424 ◽  
Author(s):  
M. A. Mamun ◽  
A. H. Farha ◽  
Y. Ufuktepe ◽  
H. E. Elsayed-Ali ◽  
A. A. Elmustafa

ABSTRACTNanomechanical and structural properties of pulsed laser deposited niobium nitride thin films were investigated using X-ray diffraction, atomic force microscopy, and nanoindentation. NbN film reveals cubic δ-NbN structure with the corresponding diffraction peaks from the (111), (200), and (220) planes. The NbN thin films depict highly granular structure, with a wide range of grain sizes that range from 15-40 nm with an average surface roughness of 6 nm. The average modulus of the film is 420±60 GPa, whereas for the substrate the average modulus is 180 GPa, which is considered higher than the average modulus for Si reported in the literature due to pile-up. The hardness of the film increases from an average of 12 GPa for deep indents (Si substrate) measured using XP CSM and load control (LC) modes to an average of 25 GPa measured using the DCM II head in CSM and LC modules. The average hardness of the Si substrate is 12 GPa.


Author(s):  
Shunyu Chang ◽  
Yanquan Geng ◽  
Yongda Yan

AbstractAs one of the most widely used nanofabrication methods, the atomic force microscopy (AFM) tip-based nanomachining technique offers important advantages, including nanoscale manipulation accuracy, low maintenance cost, and flexible experimental operation. This technique has been applied to one-, two-, and even three-dimensional nanomachining patterns on thin films made of polymers, metals, and two-dimensional materials. These structures are widely used in the fields of nanooptics, nanoelectronics, data storage, super lubrication, and so forth. Moreover, they are believed to have a wide application in other fields, and their possible industrialization may be realized in the future. In this work, the current state of the research into the use of the AFM tip-based nanomachining method in thin-film machining is presented. First, the state of the structures machined on thin films is reviewed according to the type of thin-film materials (i.e., polymers, metals, and two-dimensional materials). Second, the related applications of tip-based nanomachining to film machining are presented. Finally, the current situation of this area and its potential development direction are discussed. This review is expected to enrich the understanding of the research status of the use of the tip-based nanomachining method in thin-film machining and ultimately broaden its application.


1999 ◽  
Vol 570 ◽  
Author(s):  
J. A. Venables ◽  
G. Haas ◽  
H. Brune ◽  
J.H. Harding

ABSTRACTNucleation and growth of metal clusters at defect sites is discussed in terms of rate equation models, which are applied to the cases of Pd and Ag on MgO(001) and NaCl(001) surfaces. Pd/MgO has been studied experimentally by variable temperature atomic force microscopy (AFM). The island density of Pd on Ar-cleaved surfaces was determined in-situ by AFM for a wide range of deposition temperature and flux, and stays constant over a remarkably wide range of parameters; for a particular flux, this plateau extends from 200 K ≤ T ≤ 600 K, but at higher temperatures the density decreases. The range of energies for defect trapping, adsorption, surface diffusion and pair binding are deduced, and compared with earlier data for Ag on NaCl, and with recent calculations for these metals on both NaCl and MgO


2021 ◽  
pp. 1-23
Author(s):  
Rafiul Shihab ◽  
Tasmirul Jalil ◽  
Burak Gulsacan ◽  
Matteo Aureli ◽  
Ryan Tung

Abstract Numerous nanometrology techniques concerned with probing a wide range of frequency dependent properties would benefit from a cantilevered sensor with tunable natural frequencies. In this work, we propose a method to arbitrarily tune the stiffness and natural frequencies of a microplate sensor for atomic force microscope applications, thereby allowing resonance amplification at a broad range of frequencies. This method is predicated on the principle of curvature-based stiffening. A macroscale experiment is conducted to verify the feasibility of the method. Next, a microscale finite element analysis is conducted on a proof-of-concept device. We show that both the stiffness and various natural frequencies of the device can be highly controlled through applied transverse curvature. Dynamic phenomena encountered in the method, such as eigenvalue curve veering, are discussed and methods are presented to accommodate these phenomena. We believe that this study will facilitate the development of future curvature-based microscale sensors for atomic force microscopy applications.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 463
Author(s):  
Haihua Pan ◽  
Ruikang Tang

Crystallization via particle attachment was used in a unified model for both classical and non-classical crystallization pathways, which have been widely observed in biomimetic mineralization and geological fields. However, much remains unknown about the detailed processes and driving mechanisms for the attachment. Here, we take calcite crystal as a model mineral to investigate the detailed attachment process using in situ Atomic Force Microscopy (AFM) force measurements and molecular dynamics simulations. The results show that hydration layers hinder the attachment; however, in supersaturated solutions, ionic bridges are formed between crystal gaps as a result of capillary condensation, which might enhance the aggregation of calcite crystals. These findings provide a more detailed understanding of the crystal attachment, which is of vital importance for a better understanding of mineral formation under biological and geological environments with a wide range of chemical and physical conditions.


2016 ◽  
Vol 108 (24) ◽  
pp. 243101 ◽  
Author(s):  
Aymeric Vecchiola ◽  
Pascal Chrétien ◽  
Sophie Delprat ◽  
Karim Bouzehouane ◽  
Olivier Schneegans ◽  
...  

2013 ◽  
Vol 30 ◽  
pp. 5-12 ◽  
Author(s):  
Rameshwar Adhikari

The investigation into morphology formation in ethylene/1-octene copolymers (EOCs) comprising variable 1-octene content and their blends with high density polyethylene (HDPE) and hence their tensile mechanical properties have been reported. The morphological analysis by means of atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed the macrophase separation of the components in the blends. In contrast to well defined spherulitic morphology and lamellar structure of the HDPE, the EOCs exhibited progressively distorted lamellar morphology with increasing 1-octene content. At high 1-octene content, the EOC samples possessed the ‘worm-like’ crystals, which resemble the ‘fringed micelles’ discussed in the literature. The blends allow a balance of mechanical properties (stiffness and toughness) over a wide range as shown by tensile stress strain behavior of the blends.DOI: http://dx.doi.org/10.3126/jncs.v30i0.9329Journal of Nepal Chemical Society Vol. 30, 2012 Page: 5-12 Uploaded date: 12/16/2013 


1991 ◽  
Vol 37 (9) ◽  
pp. 1497-1501 ◽  
Author(s):  
H G Hansma ◽  
A L Weisenhorn ◽  
A B Edmundson ◽  
H E Gaub ◽  
P K Hansma

Abstract The atomic force microscope (AFM) can image individual molecules by raster-scanning a sharp tip over a surface. In this paper we present molecular-resolution images of immunoglobulin M (IgM) and of ultraviolet light-polymerized films of the lipid dimethyl-bis(pentacosadiynoyloxyethyl) ammonium bromide ("BRONCO"). The polar head groups of individual lipid molecules can be resolved on the surface of this and other lipid films. These lipid films also provide a good substrate for AFM imaging of DNA and of other molecules such as antibodies. Because the AFM scans surfaces, it is most often successful at imaging either molecules that can form an array on a surface or molecules that are quite firmly attached to a surface. The ability of the AFM to operate under water, buffers, and other liquids makes it possible to study biological molecules under conditions in which they are physiologically active. Imaging of the actual molecular process of fibrin polymerization shows the potential of the AFM for studying biological processes. In the six years since its invention, the AFM has excited much interest and has imaged molecules in a wide range of systems.


2003 ◽  
Author(s):  
B. McCarthy ◽  
K. Yamnitskiy ◽  
Y. Zhao ◽  
G.E. Jabbour ◽  
D. Sarid

2003 ◽  
Vol 803 ◽  
Author(s):  
J. Kalb ◽  
F. Spaepen ◽  
M. Wuttig

ABSTRACTBoth the crystal nucleation rate and the crystal growth velocity of sputtered amorphous Ag0.055In0.065Sb0.59Te0.29 and Ge4Sb1Te5 thin films used for optical data storage were determined as a function of temperature. Crystals were directly observed using ex-situ atomic force microscopy, and their change in size after each anneal was measured. Between 140°C and 185°C, these materials exhibited similar crystal growth characteristics, but differed in their crystal nucleation characteristics. These observations provide an explanation for the different re-crystallization mechanisms observed upon laser-induced crystallization of amorphous marks.


Sign in / Sign up

Export Citation Format

Share Document