scholarly journals The profitability of organic soybean production

2009 ◽  
Vol 24 (4) ◽  
pp. 276-284 ◽  
Author(s):  
W.D. McBride ◽  
Catherine Greene

AbstractResults from long-term experimental trials suggest that similar yields and lower costs are possible with organic compared to conventional soybeans, but there is little information about the relative costs and returns of these systems on commercial farms. This study examines the profitability of commercial soybean production using a nationwide survey of soybean producers for 2006 that includes a targeted sample of organic growers. Treatment-effect models are specified to characterize adopters of the organic approach and to isolate the impact of organic choice on operating, operating and capital, and total economic costs of soybean production. Organic soybean producers tend to be younger, have less crop acreage, and are less likely to work off-farm than conventional producers. Organic soybean production costs range from about $1 to $6 per bushel higher than those for conventional soybeans due to both lower yields and higher per-acre costs, while the average organic price premium in 2006 was more than $9 per bushel. Long-term cropping systems data suggest significant returns to organic systems result from similar yields and lower costs than conventional systems, but the high returns to commercial organic production found in this study can only be attributed to the significant price premiums paid for organic soybeans. Average organic soybean price premiums have remained high since 2006 despite much higher conventional soybean prices as users of organic soybeans attempt to retain and attract more acreage. However, increases in conventional soybean prices and fuel prices reduce the incentive for planting organic soybeans by improving returns to conventional production and increasing the relative costs of organic production.

2009 ◽  
Vol 24 (2) ◽  
pp. 102-119 ◽  
Author(s):  
Michel A. Cavigelli ◽  
Beth L. Hima ◽  
James C. Hanson ◽  
John R. Teasdale ◽  
Anne E. Conklin ◽  
...  

AbstractInterest in organic grain production is increasing in the United States but there is limited information regarding the economic performance of organic grain and forage production in the mid-Atlantic region. We present the results from enterprise budget analyses for individual crops and for complete rotations with and without organic price premiums for five cropping systems at the US Department of Agriculture–Agricultural Research Service (USDA–ARS) Beltsville Farming Systems Project (FSP) from 2000 to 2005. The FSP is a long-term cropping systems trial established in 1996 to evaluate the sustainability of organic and conventional grain crop production. The five FSP cropping systems include a conventional, three-year no-till corn (Zea maysL.)–rye (Secale cerealeL.) cover crop/soybean (Glycine max(L.) Merr)–wheat (Triticum aestivumL.)/soybean rotation (no-till (NT)), a conventional, three-year chisel-till corn–rye/soybean–wheat/soybean rotation (chisel tillage (CT)), a two-year organic hairy vetch (Vicia villosaRoth)/corn–rye/soybean rotation (Org2), a three-year organic vetch/corn–rye/soybean–wheat rotation (Org3) and a four- to six-year organic corn–rye/soybean–wheat–red clover (Trifolium pratenseL.)/orchard grass (Dactylis glomerataL.) or alfalfa (Medicago sativaL.) rotation (Org4+). Economic returns were calculated for rotations present from 2000 to 2005, which included some slight changes in crop rotation sequences due to weather conditions and management changes; additional analyses were conducted for 2000 to 2002 when all crops described above were present in all organic rotations. Production costs were, in general, greatest for CT, while those for the organic systems were lower than or similar to those for NT for all crops. Present value of net returns for individual crops and for full rotations were greater and risks were lower for NT than for CT. When price premiums for organic crops were included in the analysis, cumulative present value of net returns for organic systems (US$3933 to 5446 ha−1, 2000 to 2005; US$2653 to 2869 ha−1, 2000 to 2002) were always substantially greater than for the conventional systems (US$1309 to 1909 ha−1, 2000 to 2005; US$634 to 869 ha−1, 2000 to 2002). With price premiums, Org2 had greater net returns but also greater variability of returns and economic risk across all years than all other systems, primarily because economic success of this short rotation was highly dependent on the success of soybean, the crop with the highest returns. Soybean yield variability was high due to the impact of weather on the success of weed control in the organic systems. The longer, more diverse Org4+ rotation had the lowest variability of returns among organic systems and lower economic risk than Org2. With no organic price premiums, economic returns for corn and soybean in the organic systems were generally lower than those for the conventional systems due to lower grain yields in the organic systems. An exception to this pattern is that returns for corn in Org4+ were equal to or greater than those in NT in four of six years due to both lower production costs and greater revenue than for Org2 and Org3. With no organic premiums, present value of net returns for the full rotations was greatest for NT in 4 of 6 years and greatest for Org4+ the other 2 years, when returns for hay crops were high. Returns for individual crops and for full rotations were, in general, among the lowest and economic risk was, in general, among the highest for Org2 and Org3. Results indicate that Org4+, the longest and most diverse rotation, had the most stable economic returns among organic systems but that short-term returns could be greatest with Org2. This result likely explains, at least in part, why some organic farmers in the mid-Atlantic region, especially those recently converting to organic methods, have adopted this relatively short rotation. The greater stability of the longer rotation, by contrast, may explain why farmers who have used organic methods for longer periods of time tend to favor rotations that include perennial forages.


2021 ◽  
Vol 7 (34) ◽  
pp. eabg6995
Author(s):  
Raphaël A. Wittwer ◽  
S. Franz Bender ◽  
Kyle Hartman ◽  
Sofia Hydbom ◽  
Ruy A. A. Lima ◽  
...  

Ecosystems provide multiple services to humans. However, agricultural systems are usually evaluated on their productivity and economic performance, and a systematic and quantitative assessment of the multifunctionality of agroecosystems including environmental services is missing. Using a long-term farming system experiment, we evaluated and compared the agronomic, economic, and ecological performance of the most widespread arable cropping systems in Europe: organic, conservation, and conventional agriculture. We analyzed 43 agroecosystem properties and determined overall agroecosystem multifunctionality. We show that organic and conservation agriculture promoted ecosystem multifunctionality, especially by enhancing regulating and supporting services, including biodiversity preservation, soil and water quality, and climate mitigation. In contrast, conventional cropping showed reduced multifunctionality but delivered highest yield. Organic production resulted in higher economic performance, thanks to higher product prices and additional support payments. Our results demonstrate that different cropping systems provide opposing services, enforcing the productivity–environmental protection dilemma for agroecosystem functioning.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 141
Author(s):  
Kęstutis Romaneckas ◽  
Jovita Balandaitė ◽  
Aušra Sinkevičienė ◽  
Rasa Kimbirauskienė ◽  
Algirdas Jasinskas ◽  
...  

Growing as much crop biomass as possible in the shortest possible time is the target for most bio-energy producers. However, according to the requirements of the Green Deal, the consumption of fertilizers and crop protection products will have to be significantly reduced between 2023 and 2027. In order to meet all the necessary conditions for the production of biomass, a stationary field experiment was carried out at the Experimental Station of Vytautas Magnus University, Lithuania, in 2020–2021. Multi-cultivations of maize, hemp and faba bean were investigated. The aim of this study was to ascertain the impact of multi-cropping intensity on soil structural composition, stability, penetration resistance and gas concentration–respiration. As expected, multi-cropping stabilized the gas concentration and emission from the soil and decreased the proportion of micro-structures in the top soil layers. However, the stability of the soil decreased in all the experimental plots. Gas concentration and respiration mainly depended on soil structural composition, temperature and moisture content. The results of the experiment suggest performing investigations at a long-term scale because the intensive variation of meteorological conditions had a higher impact on the soil properties than the multi-cropping systems.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 677
Author(s):  
Sangpil Ko ◽  
Pasi Lautala ◽  
Kuilin Zhang

Over the past several decades, the transportation of raw materials (logs) has increasingly shifted from the railway to trucks. However, the long-term sustainability of this shift is being questioned due to the shortage of truck drivers, fluctuation of fuel prices, and changes in hours of service laws. The industry is interested in the possibility to shift more logs back to the railway but the impact of such a shift on truckers has not been investigated. This study attempted to quantify the impact of such a change on the operations of log truckers by calculating time efficiency (percentage of daily hours of service for revenue activities) and value efficiency (average loaded versus total ton-kilometers per day) between a truck only and multimodal (truck/rail) alternatives. We used actual data from the forest products industry companies and truck performance data from an earlier study to investigate the impact through case studies in four different locations of the upper Midwest, US. The results of our analysis revealed that in three out of our four case studies, re-routing log movements through rail yard/siding improved the time efficiency and value efficiency. Finally, our sensitivity analysis found that increases in average truck speed and maximum hours or service had higher impact on multimodal transportation than in truck-only system.


Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 192 ◽  
Author(s):  
William Cox ◽  
John Hanchar ◽  
Jerome Cherney

Crop producers transitioning to an organic cropping system must grow crops organically without price premiums for 36 months before certification. We evaluated red clover-maize, maize-soybean, and soybean-wheat/red clover rotations in organic and conventional cropping systems with recommended and high inputs in New York, USA to identify the best rotation and management practices during the transition. Organic compared with conventional maize with recommended inputs in the maize-soybean rotation (entry crop) averaged 32% lower yields, $878/ha higher production costs, and $1096/ha lower partial returns. Organic maize compared with conventional maize with recommended inputs in the red clover-maize rotation (second transition crop) had similar yields, production costs, and partial returns. Organic compared with conventional soybean with recommended inputs in soybean-wheat/red clover or maize-soybean rotations had similar yields, production costs, and partial returns. Organic compared with conventional wheat with recommended inputs in the soybean-wheat/clover rotation had similar yields, $416/ha higher production costs, and $491/ha lower partial returns. The organic compared with the conventional soybean-wheat/red clover rotation had the least negative impact on partial returns during the transition. Nevertheless, all organic rotations had similar partial returns ($434 to $495/ha) so transitioning immediately, regardless of entry crop, may be most prudent. High input management did not improve organic crop yields during the transition.


2016 ◽  
pp. 773-790
Author(s):  
Ruby Melody Agbola ◽  
Evans Sokro

The chronic shortage of petroleum fuels, especially gasoline and LPG, and the prolonged and indiscriminate power outages coupled with the recent increment in fuel prices appear to be taking their toll on Ghanaian businesses; hence, some have questioned the degree of security, reliability, and long-term sustainability of the country's energy need. The chapter assesses the impact of the recent power outages on the growth and profitability of Small and Medium Enterprises (SMEs). The study employed a survey design consisting of structured questionnaires involving a total of 190 SMEs across the country. An eight item Likert scale used to assess the impact of the energy crisis on three key measures of business growth revealed a strong positive correlation between the power outages and reduced profitability but a weak correlation with business expansion by way of market development and a statistically insignificant relationship between the power outages and growth in number of employees.


2001 ◽  
Vol 41 (8) ◽  
pp. 1167 ◽  
Author(s):  
Philip J. Newton

Use of urea fertiliser for cereal cropping in south eastern Australia has increased rapidly in recent years to arrest a general decline in grain protein and to increase yields. In conservation cropping systems, crop stubbles provide a source of carbon, which has the potential to retain a portion of the fertiliser nitrogen in the soil. The impact of fertiliser nitrogen was compared under 4 stubble management regimes for efficiency of nitrogen uptake by a wheat crop in a long-term cereal–grain legume rotation. The experiment was established on a duplex red-brown earth in 1985 to compare stubble retention (standing, shredded, incorporated) with stubble burning. In 1995, wheat following a failed lupin crop was topdressed with urea fertiliser at 50 kg nitrogen per hectare to split plots of each stubble treatment at the third-leaf stage of growth. The urea significantly increased nitrogen uptake by wheat grown on burnt stubbles and increased grain yield by 1 t/ha. Nitrogen applied to wheat grown on stubbles retained above-ground increased yield by 0.5 t/ha, whereas there was no significant yield increase from nitrogen when stubble was incorporated due to less transfer of dry matter to grain. Efficiency of urea-nitrogen uptake in grain was reduced under stubble retention. The total grain nitrogen uptake in response to stubble burning increased by 17.6 kg/ha, which was equivalent to a conversion efficiency of 35%, compared with only 26, 24 and 16% of the applied 50 kg nitrogen per hectare for stubble standing, shredding and incorporation treatments, respectively. Soil organic carbon and total nitrogen levels were 1 and 0.1%, respectively, irrespective of stubble treatment. Added urea increased microbial decomposition of cellulose in calico cloth buried beneath stubbles retained above-ground by 30%, compared with stubble incorporated or burnt treatments. These results suggest that where low levels of available nitrogen exist in cropping systems that use stubble retention, higher nitrogen inputs may be needed, due to less efficient uptake of nitrogen from urea fertiliser.


2015 ◽  
Vol 52 (1) ◽  
pp. 69-86 ◽  
Author(s):  
ANA PAULA PESSIM DE OLIVEIRA ◽  
PETER J. THORBURN ◽  
JODY S. BIGGS ◽  
EDUARDO LIMA ◽  
LÚCIA HELENA CUNHA DOS ANJOS ◽  
...  

SUMMARYTo evaluate the impact of trash management on sugarcane production and N fertiliser requirements in environmental conditions of Brazilian coastal tablelands, a simulation was conducted with APSIM-Sugar cropping systems model. The model was parameterised for, and validated against results from a long term (over 23 years) experiment comparing the system-burnt trash and green cane trash blanketing (GCTB), in Linhares-ES. Simulations were conducted over two crop cycles (14 years) with different management (100%, 75%, 50%, 25% GCTB and burnt trash), and N fertiliser rates from 0 to 240 kg ha−1 (in 40 kg ha−1 increments) on the ratoon crops, and 75% of these rates on the plant crops. Measured cane yields and soil carbon were simulated well by the model. The RMSE (root mean square error) of predictions in burnt and GCTB treatments were 14.02 Mg ha−1 and 13.45 Mg ha−1 for yield, and 0.09 and 0.13% for soil carbon. In the simulation, the cane yield responded positively to the GCTB systems. Optimum N rates were higher in the 100%, 75% and 50% GCTB than with burnt trash and 25% GCTB reflecting the greater yields under GCTB systems. The response to trash retention was dependent on N fertiliser, and it was smaller or even negative at lower N rates. With adequate N, the positive responses were predicted to occur in all crops after the imposition of GCTB system. The removal of any proportion of the trash reduced the potential sugarcane yield. The simulations showed that average environmental losses of N are likely to be greater from trash-retained systems at all N fertiliser rates.


Author(s):  
R. K. Naresh ◽  
Yogesh Kumar ◽  
S. S. Tomar ◽  
Mukesh Kumar ◽  
M. Sharath Chandra ◽  
...  

The Long term experiment (2009-10 to-2018-19) was conducted to study the effects of precision land levelled (PLL) versus traditional land levelled (TLL) systems on aggregate-associated soil organic carbon (SOC) in a farmers participatory fields under sub-tropical ecosystems (Western Uttar Pradesh) of Indian conditions. The significance of this study mainly focus to determine the suitability of various labile carbon fractions as indicators of soil quality and the stability of aggregates plays a vital role in preserving and long term storing of soil organic carbon by implementing Precision Land Levelling under various arable cropping system. The treatment comprised of sixteen alternative arable cropping systems strategies viz. R-WPLL, R-WTLL, S-WPLL, S-WTLL, R-P-MbPLL, R-P-MbTLL, R-P-OPLL, R-P-OTLL, R-C-OPLL, R-C-OTLL, O-W-MbPLL, O-W-MbTLL, M-W-MbPLL, M-W-MbTLL, M-P-MbPLL, and M-P-MbTLL etc were taken with recommended dose of fertilizers and various observations were recorded. The results indicated that the M-P-MbPLL produced 79.5 kgha-1day-1 productivity and used only 110 cm irrigation water which was 48.1 per cent less than irrigation water used for R-WPLL. The land use efficiency under R-P-MbPLL, R-P-OPLL, R-P-MbPLL, R-C-OPLL and M-P-MbPLL were recorded as 86.2, 85.1, 84.8, 84.6 and 83.9%. However, energy value in terms total input energy and energy productivity were 39.9 and 218.5 GJ ha-1 over existing R-W system (32.9 & 105.7 GJ ha-1). The quantity of water used in the R-C-O, M-W-Mb, M-P-Mb, and O-W-Mb were 46.1, 44.9, 40.1 and 36.3 per cent less than quantity of water used for R-W system. Aggregate-associated SOC contents in 0-15 cm depth were recorded highest SOC at 15-30 cm depth in PLL systems as 9.4% for both M-P-MbPLL and M-W-MbPLL. Highest PON change in arable cropping system (30.9 & 40.1%) was found in O-W-Mb with precision land levelling (T11) plots followed by R-P-O with precision land levelling (T7) plots (26.1 & 35.8%) as compared to R-W and S-W system. The values of LFOC in surface soil were 194.7, 187.9, 176.2, 170.9, 168.5, 150.6, 132.8 and 123.8 mgkg−1 in R-P-O, R-C-O, M-W-Mb, O-W-Mb, M-P-Mb, R-P-Mb, R-W and S-W with precision land levelling treatments. Higher SOC sequestration was observed with precision land leveling along with alternative arable cropping systems with O-W-MbPLL, R-C-OPLL, R-P-OPLL, O-W-MbPLL and M-P-MbPLL respectively. Therefore, PLL systems had greater soil surface aggregation and carbon storage, land levelling did not affect SOC patterns across aggregates, but changed the distribution of aggregate size, reflecting that land levelling mainly influenced soil fertility by altering soil structure.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000591-000597
Author(s):  
Cheryl Tulkoff ◽  
Greg Caswell

Component obsolescence management is a strategic practice that also mitigates the risk of counterfeit parts. Left unchecked, obsolescence issues increase support, development and production costs. So, planning ahead is critical. For companies that do proactively manage component availability and obsolescence, the effect of long-term storage on manufacturability and reliability is the area of major concern. Many issues can arise depending on the component technology and storage environment. Reliability concerns to consider include solderability, stress driven diffusive voiding, moisture, Kirkendall voiding, intermetallics/oxidation and tin whiskering. When component obsolescence isn't planned for, the secondary market is often the supply chain of last recourse. While it is possible to get high quality, genuine parts, it is also possible to get nonconforming, reworked, or counterfeit components. And, it is increasingly difficult to differentiate genuine parts from their counterfeit equivalents. Historically, the secondary market provided a mechanism for finding parts in short supply or at reduced cost. Today, high-reliability system manufacturers are less willing to risk contamination of their supply chain with potentially substandard parts in order to save a few dollars on the cost of a part. This paper will cover obsolescence management strategies, relevant industry standards, use of managed supply programs (MSP) and contract pooled options, plus long term storage recommendations and practices.


Sign in / Sign up

Export Citation Format

Share Document