scholarly journals Masers in GLIMPSE Extended Green Objects (EGOs)

2012 ◽  
Vol 8 (S287) ◽  
pp. 127-132
Author(s):  
Claudia J. Cyganowski ◽  
Crystal L. Brogan ◽  
Todd R. Hunter ◽  
Ed Churchwell ◽  
Jin Koda ◽  
...  

AbstractLarge-scale Spitzer surveys of the Galactic plane have yielded a new diagnostic for massive young stellar objects (MYSOs) that are actively accreting and driving outflows: extended emission in the IRAC 4.5 μm band, believed to trace shocked molecular gas. Maser studies of these extended 4.5 μm sources (called EGOs, Extended Green Objects, for the common coding of 3-color IRAC images) have been and remain crucial for understanding the nature of EGOs. High detection rates in VLA CH3OH maser surveys provided the first proof that EGOs were indeed MYSOs driving outflows; our recent Nobeyama 45-m survey of northern EGOs shows that the majority are associated with H2O masers. Maser studies of EGOs also provide important constraints for the longstanding goal of a maser evolutionary sequence for MYSOs, particularly in combination with high resolution (sub)mm data. New SMA results show that Class I methanol masers can be excited by both young (hot core) and evolved (ultracompact HII region) sources within the same massive star-forming region.

2018 ◽  
Vol 619 ◽  
pp. A106 ◽  
Author(s):  
Josefa E. Großschedl ◽  
João Alves ◽  
Stefan Meingast ◽  
Christine Ackerl ◽  
Joana Ascenso ◽  
...  

We use the Gaia DR2 distances of about 700 mid-infrared selected young stellar objects in the benchmark giant molecular cloud Orion A to infer its 3D shape and orientation. We find that Orion A is not the fairly straight filamentary cloud that we see in (2D) projection, but instead a cometary-like cloud oriented toward the Galactic plane, with two distinct components: a denser and enhanced star-forming (bent) Head, and a lower density and star-formation quieter ∼75 pc long Tail. The true extent of Orion A is not the projected ∼40 pc but ∼90 pc, making it by far the largest molecular cloud in the local neighborhood. Its aspect ratio (∼30:1) and high column-density fraction (∼45%) make it similar to large-scale Milky Way filaments (“bones”), despite its distance to the galactic mid-plane being an order of magnitude larger than typically found for these structures.


2002 ◽  
Vol 206 ◽  
pp. 35-38 ◽  
Author(s):  
Ray S. Furuya ◽  
Yoshimi Kitamura ◽  
Alwyn Wootten ◽  
Mark J. Claussen ◽  
Ryohei Kawabe

We present the results from a series of multi-epoch 22 GHz H2O maser surveys with the Nobeyama 45 m telescope and the VLA towards low-mass young stellar objects, including all the class 0 sources in the northern sky. Our Nobeyama 45 m survey is the deepest survey - down to an isotopic H2O luminosity of ∼ 10−13L⊙ - performed so far. From this survey, we obtained the following results. (1) Class 0 sources show high H2O maser activity: our derived detection rates are ∼ 38% for class 0, but only ∼ 4% for class I sources. (2) Activity of the H2O masers is more likely related to 100 AU scale ionized jets than to large scale molecular outflows.


2006 ◽  
Vol 2 (S237) ◽  
pp. 457-457
Author(s):  
Yumiko Oasa

Young brown dwarfs have been identified in a significant population in various star forming regions. Some deep surveys have yielded less massive objects with planetary-mass (e.g., Oasa et al. 1999; Lucas & Roche 2000). Nevertheless, it is not yet clear how abundant these very low-mass objects are formed. S106 is one of the nearest massive star-forming regions associated with prominent bipolar nebulae and an HII region. We have conducted near-infrared photometric and spectroscopic observations of very low-mass young stellar objects (YSOs) in the S106 region.


2017 ◽  
Vol 605 ◽  
pp. A35 ◽  
Author(s):  
P. Palmeirim ◽  
A. Zavagno ◽  
D. Elia ◽  
T. J. T. Moore ◽  
A. Whitworth ◽  
...  

We present a comprehensive statistical analysis of star-forming objects located in the vicinities of 1360 bubble structures throughout the Galactic plane and their local environments. The compilation of ~70 000 star-forming sources, found in the proximity of the ionized (Hii) regions and detected in both Hi-GAL and GLIMPSE surveys, provided a broad overview of the different evolutionary stages of star-formation in bubbles, from prestellar objects to more evolved young stellar objects (YSOs). Surface density maps of star-forming objects clearly reveal an evolutionary trend where more evolved star-forming objects (Class II YSO candidates) are found spatially located near the center, while younger star-forming objects are found at the edge of the bubbles. We derived dynamic ages for a subsample of 182 H ii regions for which kinematic distances and radio continuum flux measurements were available. We detect approximately 80% more star-forming sources per unit area in the direction of bubbles than in the surrounding fields. We estimate the clump formation efficiency (CFE) of Hi-GAL clumps in the direction of the shell of the bubbles to be ~15%, around twice the value of the CFE in fields that are not affected by feedback effects. We find that the higher values of CFE are mostly due to the higher CFE of protostellar clumps, in particular in younger bubbles, whose density of the bubble shells is higher. We argue that the formation rate from prestellar to protostellar phase is probably higher during the early stages of the (H ii ) bubble expansion. Furthermore, we also find a higher fraction of massive YSOs (MYSOs) in bubbles at the early stages of expansion (<2 Myr) than older bubbles. Evaluation of the fragmentation time inside the shell of bubbles advocates the preexistence of clumps in the medium before the bubble expansion in order to explain the formation of MYSOs in the youngest H ii regions (<1 Myr), as supported by numerical simulations. Approximately 23% of the Hi-GAL clumps are found located in the direction of a bubble, with 15% for prestellar clumps and 41% for protostellar clumps. We argue that the high fraction of protostellar clumps may be due to the acceleration of the star-formation process cause by the feedback of the (Hii) bubbles.


2018 ◽  
Vol 619 ◽  
pp. A108 ◽  
Author(s):  
L. Supan ◽  
G. Castelletti ◽  
A. D. Supanitsky ◽  
M. G. Burton ◽  
G. F. Wong ◽  
...  

Using high-resolution data of the 12CO and 13CO (J = 1–0) line emission from the Mopra Southern Galactic Plane CO Survey in conjunction with neutral hydrogen observations from the Southern Galactic Plane Survey (SGPS) and mid-infrared Spitzer data, we have explored the large-scale environment of the supernova remnant Kes 41. On the basis of these data, we identified for the first time the parent cloud of Kes 41 in its whole extension and surveyed the HII regions, masers, and the population of massive young stellar objects in the cloud. The whole unveiled giant cloud, located at the kinematic distance of 12.0 ± 3.6 kpc, whose average total mass and size are ~10–30 × 105 M⊙ and ~ 26′, also shines in γ-rays, as revealed by the Large Area Telescope on board the Fermi satellite. We determined a high average proton density ~500–1000 cm−3 in the large molecular complex, of which protons from the neutral atomic and ionised gases comprise only ~15%.


2018 ◽  
Vol 14 (S344) ◽  
pp. 313-315
Author(s):  
Sarolta Zahorecz ◽  
Toshikazu Onishi ◽  
Kazuyuki Muraoka ◽  
Aya Homma ◽  
Ryohei Harada ◽  
...  

AbstractThe Magellanic Clouds offer the opportunity to obtain a spatially resolved view of external galaxies at reduced metallicity with no distance ambiguity. Our ALMA observations of the active star-forming region N83C in the Small Magellanic Cloud (SMC) revealed subparsec-scale molecular structures in 12CO and 13CO (2-1) emission Muraoka et al. (2017). We found strong CO peaks associated with Young Stellar Objects(YSOs) and derived a typical gas density of ∽104 cm−3 and gas temperature of 40-60 K from the excitation analysis. The high gas density and temperature are presumably due to the effect of the HII region under the low-metallicity environment. We have found that the column density ratios N(CI)/N(CO) are generally high throughout the cloud compared with the Galaxy, ranging from 0.2 to 2.0. A peak of the ratio is observed toward a CO peak associated with a massive protostar.


2021 ◽  
Vol 503 (1) ◽  
pp. 270-291
Author(s):  
F Navarete ◽  
A Damineli ◽  
J E Steiner ◽  
R D Blum

ABSTRACT W33A is a well-known example of a high-mass young stellar object showing evidence of a circumstellar disc. We revisited the K-band NIFS/Gemini North observations of the W33A protostar using principal components analysis tomography and additional post-processing routines. Our results indicate the presence of a compact rotating disc based on the kinematics of the CO absorption features. The position–velocity diagram shows that the disc exhibits a rotation curve with velocities that rapidly decrease for radii larger than 0.1 arcsec (∼250 au) from the central source, suggesting a structure about four times more compact than previously reported. We derived a dynamical mass of 10.0$^{+4.1}_{-2.2}$ $\rm {M}_\odot$ for the ‘disc + protostar’ system, about ∼33 per cent smaller than previously reported, but still compatible with high-mass protostar status. A relatively compact H2 wind was identified at the base of the large-scale outflow of W33A, with a mean visual extinction of ∼63 mag. By taking advantage of supplementary near-infrared maps, we identified at least two other point-like objects driving extended structures in the vicinity of W33A, suggesting that multiple active protostars are located within the cloud. The closest object (Source B) was also identified in the NIFS field of view as a faint point-like object at a projected distance of ∼7000 au from W33A, powering extended K-band continuum emission detected in the same field. Another source (Source C) is driving a bipolar $\rm {H}_2$ jet aligned perpendicular to the rotation axis of W33A.


Author(s):  
A J Rigby ◽  
N Peretto ◽  
R Adam ◽  
P Ade ◽  
M Anderson ◽  
...  

Abstract Determining the mechanism by which high-mass stars are formed is essential for our understanding of the energy budget and chemical evolution of galaxies. By using the New IRAM KIDs Array 2 (NIKA2) camera on the Institut de Radio Astronomie Millimétrique (IRAM) 30-m telescope, we have conducted high-sensitivity and large-scale mapping of a fraction of the Galactic plane in order to search for signatures of the transition between the high- and low-mass star-forming modes. Here, we present the first results from the Galactic Star Formation with NIKA2 (GASTON) project, a Large Programme at the IRAM 30-m telescope which is mapping ≈2 deg2 of the inner Galactic plane (GP), centred on ℓ = 23${_{.}^{\circ}}$9, b = 0${_{.}^{\circ}}$05, as well as targets in Taurus and Ophiuchus in 1.15 and 2.00 mm continuum wavebands. In this paper we present the first of the GASTON GP data taken, and present initial science results. We conduct an extraction of structures from the 1.15 mm maps using a dendrogram analysis and, by comparison to the compact source catalogues from Herschel survey data, we identify a population of 321 previously-undetected clumps. Approximately 80 per cent of these new clumps are 70 μm-quiet, and may be considered as starless candidates. We find that this new population of clumps are less massive and cooler, on average, than clumps that have already been identified. Further, by classifying the full sample of clumps based upon their infrared-bright fraction – an indicator of evolutionary stage – we find evidence for clump mass growth, supporting models of clump-fed high-mass star formation.


2019 ◽  
Vol 630 ◽  
pp. A90 ◽  
Author(s):  
Bertil Pettersson ◽  
Bo Reipurth

A deep objective-prism survey for Hα emission stars towards the Canis Major star-forming clouds was performed. A total of 398 Hα emitters were detected, 353 of which are new detections. There is a strong concentration of these Hα emitters towards the molecular clouds surrounding the CMa OB1 association, and it is likely that these stars are young stellar objects recently born in the clouds. An additional population of Hα emitters is scattered all across the region, and probably includes unrelated foreground dMe stars and background Be stars. About 90% of the Hα emitters are detected by WISE, of which 75% was detected with usable photometry. When plotted in a WISE colour–colour diagram it appears that the majority are Class II YSOs. Coordinates and finding charts are provided for all the new stars, and coordinates for all the detections. We searched the Gaia-DR2 catalogue and from 334 Hα emission stars with useful parallaxes, we selected a subset of 98 stars that have parallax errors of less than 20% and nominal distances in the interval 1050 to 1350 pc that surrounds a strong peak at 1185 pc in the distance distribution. Similarly, Gaia distances were obtained for 51 OB-stars located towards Canis Major and selected with the same parallax errors as the Hα stars. We find a median distance for the OB stars of 1182 pc, in excellent correspondence with the distance from the Hα stars. Two known runaway stars are confirmed as members of the association. Finally, two new Herbig-Haro objects are identified.


2019 ◽  
Vol 627 ◽  
pp. A135 ◽  
Author(s):  
A. Bhardwaj ◽  
N. Panwar ◽  
G. J. Herczeg ◽  
W. P. Chen ◽  
H. P. Singh

Context. Pre-main-sequence variability characteristics can be used to probe the physical processes leading to the formation and initial evolution of both stars and planets. Aims. The photometric variability of pre-main-sequence stars is studied at optical wavelengths to explore star–disk interactions, accretion, spots, and other physical mechanisms associated with young stellar objects. Methods. We observed a field of 16′ × 16′ in the star-forming region Pelican Nebula (IC 5070) at BVRI wavelengths for 90 nights spread over one year in 2012−2013. More than 250 epochs in the VRI bands are used to identify and classify variables up to V ∼ 21 mag. Their physical association with the cluster IC 5070 is established based on the parallaxes and proper motions from the Gaia second data release (DR2). Multiwavelength photometric data are used to estimate physical parameters based on the isochrone fitting and spectral energy distributions. Results. We present a catalog of optical time-series photometry with periods, mean magnitudes, and classifications for 95 variable stars including 67 pre-main-sequence variables towards star-forming region IC 5070. The pre-main-sequence variables are further classified as candidate classical T Tauri and weak-line T Tauri stars based on their light curve variations and the locations on the color-color and color-magnitude diagrams using optical and infrared data together with Gaia DR2 astrometry. Classical T Tauri stars display variability amplitudes up to three times the maximum fluctuation in disk-free weak-line T Tauri stars, which show strong periodic variations. Short-term variability is missed in our photometry within single nights. Several classical T Tauri stars display long-lasting (≥10 days) single or multiple fading and brightening events of up to two magnitudes at optical wavelengths. The typical mass and age of the pre-main-sequence variables from the isochrone fitting and spectral energy distributions are estimated to be ≤1 M⊙ and ∼2 Myr, respectively. We do not find any correlation between the optical amplitudes or periods with the physical parameters (mass and age) of pre-main-sequence stars. Conclusions. The low-mass pre-main-sequence stars in the Pelican Nebula region display distinct variability and color trends and nearly 30% of the variables exhibit strong periodic signatures attributed to cold spot modulations. In the case of accretion bursts and extinction events, the average amplitudes are larger than one magnitude at optical wavelengths. These optical magnitude fluctuations are stable on a timescale of one year.


Sign in / Sign up

Export Citation Format

Share Document