scholarly journals Supernova Remnants in Starburst Regions

2012 ◽  
Vol 8 (S292) ◽  
pp. 97-97
Author(s):  
A. I. Asvarov

AbstractWe study the evolution of SNRs in starburst regions taking into consideration the role of the high ambient pressure and the influence of gravitational forces from the stellar component within the shell of a SNR. On this basis, we discuss the connection between the radio, infrared, and gamma emissions from starburst regions.

1966 ◽  
Vol 21 (6) ◽  
pp. 1833-1838 ◽  
Author(s):  
G. P. Lord ◽  
G. F. Bond ◽  
K. E. Schaefer

2010 ◽  
Vol 20 (2) ◽  
pp. 157-178 ◽  
Author(s):  
Andrew P. Roddick ◽  
Christine A. Hastorf

Based on more than a decade of research on the Taraco Peninsula, Titicaca Basin, Bolivia, we discuss the role of memory, tradition and ancestral participation from the earliest settled communities to the founding and influence of the Tiwanaku order. We examine the shifting role of social memory vis-à-vis public ceremonies, pottery and food production. While the earlier phases give a sense of familial community and the construction of place through ancestor veneration, the later phases suggest stronger lineage commemoration, with families acting as gravitational forces in the burgeoning political developments. Our diachronic study on the Taraco Peninsula tracks these practices illustrating the movement along a discursive–non-discursive continuum, with some practices brought to the surface and politicized.


2016 ◽  
Vol 800 ◽  
pp. 180-212 ◽  
Author(s):  
Pablo Peñas-López ◽  
Miguel A. Parrales ◽  
Javier Rodríguez-Rodríguez ◽  
Devaraj van der Meer

The term ‘history effect’ refers to the contribution of any past mass transfer events between a gas bubble and its liquid surroundings towards the current diffusion-driven growth or dissolution dynamics of that same bubble. The history effect arises from the (non-instantaneous) development of the dissolved gas concentration boundary layer in the liquid in response to changes in the concentration at the bubble interface caused, for instance, by variations of the ambient pressure in time. Essentially, the history effect amounts to the acknowledgement that at any given time the mass flux across the bubble is conditioned by the preceding time history of the concentration at the bubble boundary. Considering the canonical problem of an isolated spherical bubble at rest, we show that the contribution of the history effect in the current interfacial concentration gradient is fully contained within a memory integral of the interface concentration. Retaining this integral term, we formulate a governing differential equation for the bubble dynamics, analogous to the well-known Epstein–Plesset solution. Our equation does not make use of the quasi-static radius approximation. An analytical solution is presented for the case of multiple step-like jumps in pressure. The nature and relevance of the history effect is then assessed through illustrative examples. Finally, we investigate the role of the history effect in rectified diffusion for a bubble that pulsates under harmonic pressure forcing in the non-inertial, isothermal regime.


Author(s):  
Paulina Flasińska

Flammable substances may form explosive atmospheres when mixed with air. To prevent their formation or minimise the risk of their occurrence, it is necessary to understand the properties of the mixtures of flammable substances and to apprehend the properties characterising the course of a potential explosion. To minimise the risk of a fire or an explosion, a process called inerting is used in which, e.g. nitrogen plays the role of an inert agent. The article discusses the method for testing the flammability limits, the “bomb” method, in accordance with the European standard PN-EN 1839 and the limiting oxygen concentration (LOC) according to the European standard PN-EN 14756. The study shows the influence of inert gas on the flammability range of selected substances: hydrogen, methane, and hexane, which in practice allows the assessment of the explosion hazard of closed and open spaces, the establishment of safe working conditions, and the selection of equipment operating in given explosion hazard zones. The tests were carried out at 25 °C for hydrogen and methane and at 40 °C for hexane, at ambient pressure.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Richard P. Oleksak ◽  
Rafik Addou ◽  
Bharat Gwalani ◽  
John P. Baltrus ◽  
Tao Liu ◽  
...  

AbstractCurrent and future power systems require chromia-forming alloys compatible with high-temperature CO2. Important questions concerning the mechanisms of oxidation and carburization remain unanswered. Herein we shed light onto these processes by studying the very initial stages of oxidation of Fe22Cr and Fe22Ni22Cr model alloys. Ambient-pressure X-ray photoelectron spectroscopy enabled in situ analysis of the oxidizing surface under 1 mbar of flowing CO2 at temperatures up to 530 °C, while postexposure analyses revealed the structure and composition of the oxidized surface at the near-atomic scale. We found that gas purity played a critical role in the kinetics of the reaction, where high purity CO2 promoted the deposition of carbon and the selective oxidation of Cr. In contrast, no carbon deposition occurred in low purity CO2 and Fe oxidation ensued, thus highlighting the critical role of impurities in defining the early oxidation pathway of the alloy. The Cr-rich oxide formed on Fe22Cr in high purity CO2 was both thicker and more permeable to carbon compared to that formed on Fe22Ni22Cr, where carbon transport appeared to occur by atomic diffusion through the oxide. Alternatively, the Fe-rich oxide formed in low purity CO2 suggested carbon transport by molecular CO2.


Author(s):  
Silvia Pellegrini ◽  
Andrea Negri ◽  
Luca Ciotti

AbstractEarly-type galaxies (ETGs) host a hot ISM produced mainly by stellar winds, and heated by Type Ia supernovae and the thermalization of stellar motions. High resolution 2D hydrodynamical simulations showed that ordered rotation in the stellar component results in the formation of a centrifugally supported cold equatorial disc. In a recent numerical investigation we found that subsequent generations of stars are formed in this cold disc; this process consumes most of the cold gas, leaving at the present epoch cold masses comparable to those observed. Most of the new stellar mass formed a few Gyrs ago, and resides in a disc.


2008 ◽  
Vol 65 (3) ◽  
pp. 1095-1097 ◽  
Author(s):  
David M. Schultz ◽  
Adam J. Durant ◽  
Jerry M. Straka ◽  
Timothy J. Garrett

Abstract Doswell has proposed a mechanism for mammatus called double-diffusive convection, the mechanism responsible for salt fingers in the ocean. The physics of salt fingers and mammatus are different. Unlike the ocean where the diffusivity is related to molecular motions within solution, the hydrometeors in clouds are affected by inertial and gravitational forces. Doswell misinterprets the vertical temperature profiles through mammatus and fails to understand the role of settling in volcanic ash clouds. Furthermore, given that mixing is a much more effective means of transferring heat in the atmosphere and given idealized numerical model simulations of mammatus showing that the destabilizing effect of subcloud sublimation is an effective mechanism for mammatus, this reply argues that double-diffusive convection is unlikely to explain mammatus, either in cumulonimbus anvils or in volcanic ash clouds.


Sign in / Sign up

Export Citation Format

Share Document