scholarly journals The Carbon Stars Adventure

2015 ◽  
Vol 11 (A29B) ◽  
pp. 160-161
Author(s):  
Gioia Rau ◽  
C. Paladini ◽  
J. Hron ◽  
B. Aringer ◽  
K. Eriksson ◽  
...  

AbstractWe compare in a systematic way spectrometric, photometric and mid-infrared (VLTI/MIDI) interferometric measurements with different types of model atmospheres. Self-consistent dynamic model atmospheres in particular were used to interpret in a consistent way the dynamic behavior of gas and dust. The results underline how the joint use of different kind of observations, as photometry, spectroscopy and interferometry, is essential to understand the atmospheres of pulsating C-rich AGB stars. The sample of C-rich stars discussed in this work provides crucial constraints for the atmospheric structure.

Author(s):  
T. M. Robinson

This article argues the following five claims: 1. Plato’s description of the origins of cosmos in the Timaeus is not a myth, nor something unlikely: when he called it an eikos mythos or eikos logos, he meant a likely or trustworthy account on this very subject. 2. Among the details in this account, the following are prominent and surprising: a) the world was fashioned in time, in that precise point that was the beginning of time; b) several kinds of duration can be distinguished in cosmology (mainly eternity, sempiternity, perpetuity and time); and c) space is an entity characterized by movement and tension. 3. In the Statesman, Plato repeats much the same thing, adding this time the strange notion that the universe’s circular movement is periodically reversed. 4. In spite of the important differences in detail, there is a striking similarity between Plato’s account of the origins of the world and the explanation adopted by much of modern cosmology. 5. What Plato shares with so many instances of recent thought is here termed “cosmological imaginativity”. A first section of the paper deals exclusively with the Timaeus. Claims 1 and 2a are supported by a revision of the meanings of mythos and logos, followed by brief reference and discussion of the argument at Timaeus 27d, leading to the conclusion that Plato affirms that the ever-changing world has indeed had a beginning in time. Claim 2b describes five different types of duration, corresponding to Forms, the Demiurge, Space, the [empirical] world and its contents, physical objects. The second section is concerned with the myth in the Statesman, discussing it as a parallel and describing its peculiar turn to the Timaeus’ cosmology and cosmogony, a complex spheric and dynamic model. After digressing into some important ideas in modern cosmology, touching especially on affinities of some of Einstein’s ideas with of Plato’s own, the paper closes with a discussion of cosmological imaginativity, oriented to recover and recognize fully Plato’s greatness as a cosmologist.


2019 ◽  
Vol 623 ◽  
pp. A119 ◽  
Author(s):  
S. Bladh ◽  
K. Eriksson ◽  
P. Marigo ◽  
S. Liljegren ◽  
B. Aringer

Context. The heavy mass loss observed in evolved stars on the asymptotic giant branch (AGB) is usually attributed to dust-driven winds, but it is still an open question how much AGB stars contribute to the dust production in the interstellar medium, especially at lower metallicities. In the case of C-type AGB stars, where the wind is thought to be driven by radiation pressure on amorphous carbon grains, there should be significant dust production even in metal-poor environments. Carbon stars can manufacture the building blocks needed to form the wind-driving dust species themselves, irrespective of the chemical composition they have, by dredging up carbon from the stellar interior during thermal pulses. Aims. We investigate how the mass loss in carbon stars is affected by a low-metallicity environment, similar to the Large and Small Magellanic Clouds (LMC and SMC). Methods. The atmospheres and winds of C-type AGB stars are modeled with the 1D spherically symmetric radiation-hydrodynamical code Dynamic Atmosphere and Radiation-driven Wind models based on Implicit Numerics (DARWIN). The models include a time-dependent description for nucleation, growth, and evaporation of amorphous carbon grains directly out of the gas phase. To explore the metallicity-dependence of mass loss we calculate model grids at three different chemical abundances (solar, LMC, and SMC). Since carbon may be dredged up during the thermal pulses as AGB stars evolve, we keep the carbon abundance as a free parameter. The models in these three different grids all have a current mass of one solar mass; effective temperatures of 2600, 2800, 3000, or 3200 K; and stellar luminosities equal to logL*∕L⊙ = 3.70, 3.85, or 4.00. Results. The DARWIN models show that mass loss in carbon stars is facilitated by high luminosities, low effective temperatures, and a high carbon excess (C–O) at both solar and subsolar metallicities. Similar combinations of effective temperature, luminosity, and carbon excess produce outflows at both solar and subsolar metallicities. There are no large systematic differences in the mass-loss rates and wind velocities produced by these wind models with respect to metallicity, nor any systematic difference concerning the distribution of grain sizes or how much carbon is condensed into dust. DARWIN models at subsolar metallicity have approximately 15% lower mass-loss rates compared to DARWIN models at solar metallicity with the same stellar parameters and carbon excess. For both solar and subsolar environments typical grain sizes range between 0.1 and 0.5 μm, the degree of condensed carbon varies between 5 and 40%, and the gas-to-dust ratios between 500 and 10 000. Conclusions. C-type AGB stars can contribute to the dust production at subsolar metallicities (down to at least [Fe∕H] = −1) as long as they dredge up sufficient amounts of carbon from the stellar interior. Furthermore, stellar evolution models can use the mass-loss rates calculated from DARWIN models at solar metallicity when modeling the AGB phase at subsolar metallicities if carbon excess is used as the critical abundance parameter instead of the C/O ratio.


Author(s):  
Shijing Wu ◽  
Haibo Zhang ◽  
Xiaosun Wang ◽  
Zeming Peng ◽  
Kangkang Yang ◽  
...  

Backlash is a key internal excitation on the dynamic response of planetary gear transmission. After the gear transmission running for a long time under load torque, due to tooth wear accumulation, the backlash between the tooth surface of two mating gears increases, which results in a larger and irregular backlash. However, the increasing backlash generated by tooth accumulated wear is generally neglected in lots of dynamics analysis for epicyclic gear trains. In order to investigate the impact of backlash generated by tooth accumulated wear on dynamic behavior of compound planetary gear set, in this work, first a static tooth surface wear prediction model is incorporated with a dynamic iteration methodology to get the increasing backlash generated by tooth accumulated wear for one pair of mating teeth under the condition that contact ratio equals to one. Then in order to introduce the tooth accumulated wear into dynamic model of compound planetary gear set, the backlash excitation generated by tooth accumulated wear for each meshing pair in compound planetary gear set is given under the condition that contact ratio equals to one and does not equal to one. Last, in order to investigate the impact of the increasing backlash generated by tooth accumulated wear on dynamic response of compound planetary gear set, a nonlinear lumped-parameter dynamic model of compound planetary gear set is employed to describe the dynamic relationships of gear transmission under the internal excitations generated by worn profile, meshing stiffness, transmission error, and backlash. The results indicate that the introduction of the increasing backlash generated by tooth accumulated wear makes a significant influence on the bifurcation and chaotic characteristics, dynamic response in time domain, and load sharing behavior of compound planetary gear set.


2021 ◽  
Vol 22 (1) ◽  
pp. 91-107
Author(s):  
F. S. Lobato ◽  
G. M. Platt ◽  
G. B. Libotte ◽  
A. J. Silva Neto

Different types of mathematical models have been used to predict the dynamic behavior of the novel coronavirus (COVID-19). Many of them involve the formulation and solution of inverse problems. This kind of problem is generally carried out by considering the model, the vector of design variables, and system parameters as deterministic values. In this contribution, a methodology based on a double loop iteration process and devoted to evaluate the influence of uncertainties on inverse problem is evaluated. The inner optimization loop is used to find the solution associated with the highest probability value, and the outer loop is the regular optimization loop used to determine the vector of design variables. For this task, we use an inverse reliability approach and Differential Evolution algorithm. For illustration purposes, the proposed methodology is applied to estimate the parameters of SIRD (Susceptible-Infectious-Recovery-Dead) model associated with dynamic behavior of COVID-19 pandemic considering real data from China's epidemic and uncertainties in the basic reproduction number (R0). The obtained results demonstrate, as expected, that the increase of reliability implies the increase of the objective function value.


2012 ◽  
Vol 460 ◽  
pp. 160-164 ◽  
Author(s):  
Song He Zhang ◽  
Yue Gang Luo ◽  
Bin Wu ◽  
Bang Chun Wen

The dynamic model of the three-span rotor-bearing system with rub-impact fault was set up. The influence to nonlinear dynamics behaviors of the rotor-bearing system that induced by rub-impact of one disc, two discs and three discs were numerically studied. The main influence of the rotor system response by the rub-impact faults are in the supercritical rotate speed. There are mutations of amplitudes in the responses of second and third spans in supercritical rotate speed when rub-impact with one disc, and there are chaotic windows in the response of first span, and jumping changes in second and third spans when rub-impact with two or three discs.


1989 ◽  
Vol 106 ◽  
pp. 229-231
Author(s):  
R.E. Stencel ◽  
J.E. Pesce ◽  
K.M. MacGregor

AbstractConventional theory explains the origin of carbon stars as due to dredge up of carbon enriched material from the stellar core during helium flash events late in the life of solar mass AGB stars (e.g. Boothroyd and Sackmann 1988). This relatively efficient process however, seems to produce a larger C/O ratio than observed (Lambert et al. 1987). A secondary effect which could contribute to the appearance of carbon stars, is the selective removal of oxygen from the atmosphere by radiative force expulsion of oxygen rich dust grains (e.g. silicates like [Mg, Fe2SiO4]). We present calculations for this scenario which evaluate the degree of momentum coupling between the grains and gas under the thermodynamical conditions of AGB star atmospheres.


2014 ◽  
Vol 11 (03) ◽  
pp. 1450020 ◽  
Author(s):  
John Fasoulas ◽  
Michael Sfakiotakis

This paper presents a general dynamic model that describes the two-dimensional grasp by two robotic fingers with soft fingertips. We derive the system's kinematics and dynamics by incorporating rolling constraints that depend on the deformation and on the rolling distance characteristics of the fingertips' material. We analyze the grasp stability at equilibrium, and conclude that the rolling properties of the fingertips can play an important role in grasp stability, especially when the width of the grasped object is small compared to the radius of the tips. Subsequently, a controller, which is based on the fingertips' rolling properties, is proposed for stable grasping concurrent with object orientation control. We evaluate the dynamic model under the proposed control law by simulations and experiments that make use of two different types of soft fingertip materials, through which it is confirmed that the dynamic model can successfully capture the effect of the fingertips' deformation and their rolling distance characteristics. Finally, we use the dynamic model to demonstrate by simulations the significance of the fingertips' rolling properties in grasping thin objects.


2014 ◽  
Vol 9 (S307) ◽  
pp. 280-285
Author(s):  
M. Wittkowski ◽  
B. Arroyo-Torres ◽  
J. M. Marcaide ◽  
F. J. Abellan ◽  
A. Chiavassa ◽  
...  

AbstractWe present near-infrared spectro-interferometric studies of red supergiant (RSG) stars using the VLTI/AMBER instrument, which are compared to previously obtained similar observations of AGB stars. Our observations indicate spatially extended atmospheric molecular layers of water vapor and CO, similar as previously observed for Mira stars. Data of VY~CMa indicate that the molecular layers are asymmetric, possibly clumpy. Thanks to the spectro-interferometric capabilities of the VLTI/AMBER instrument, we can isolate continuum bandpasses, estimate fundamental parameters of our sources, locate them in the HR diagram, and compare their positions to recent evolutionary tracks. For the example of VY CMa, this puts it close to evolutionary tracks of initial mass 25-32 M⊙. Comparisons of our data to hydrostatic model atmospheres, 3d simulations of convection, and 1d dynamic model atmospheres based on self-excited pulsation models indicate that none of these models can presently explain the observed atmospheric extensions for RSGs. The mechanism that levitates the atmospheres of red supergiant is thus a currently unsolved problem.


2000 ◽  
Vol 177 ◽  
pp. 145-151
Author(s):  
Jacco Th. Van Loon ◽  
Albert A. Zijlstra ◽  
Patricia A. Whitelock ◽  
Cecile Loup ◽  
L.B.F.M. Waters

We show the results of an infrared study of a sample of heavily obscured AGB stars in the LMC. Both carbon-rich and oxygen-rich mass-losing AGB stars can be found at both high and low luminosities, but the percentage of carbon stars decreases with increasing luminosity. The optical depth of the circumstellar envelopes also decreases with increasing luminosity, while the mass-loss rates are (nearly) constant with luminosity. We also show tentative evidence for having found the first post-AGB stars in the LMC.


1984 ◽  
Vol 105 ◽  
pp. 3-19
Author(s):  
Icko Iben

Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helium in shells above an electron-degenerate carbon-oxygen (CO) core. The excess of carbon relative to oxygen at the surfaces of these stars is thought to be due to convective dredge-up which occurs following a thermal pulse. During a thermal pulse, carbon and neutron-rich isotopes are made in a convective helium-burning zone. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22Ne(α, n)25Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13C(α, n) 16O reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes. After the dredge-up phase following each pulse, the 13C is made by the reactions 12C(p,γ) 13N(β+ v) 13C in a zone of large 12C abundance and small 1H abundance that has been established by semiconvective mixing during the dredge-up phase. There is qualitative accord between the properties of carbon stars in the Magellanic Clouds and properties of model stars, but considerably more theoretical work is required before a quantitative match is achieved.The observed paucity of AGB stars more luminous than MBOL ∼ −6 is interpreted to mean that the AGB lifetime of a star more luminous than this is at least a factor of ten smaller than the AGB lifetime of stars less luminous than this, or, at most 105 yr. Since, with current estimates of the 22Ne(α, n)25Mg reaction rate R22, only AGB model stars more luminous than MBOL ∼ −6 can produce s-process isotopes in the solar system distribution, it is inferred that either (1) the current estimates of R22 are too small by one to two orders of magnitude, allowing less luminous AGB stars to contribute, (2) the solar system distribution is not equivalent to the average Galactic distribution, being rather the consequence of a unique injection into the protosolar nebula of matter from a massive intermediate-mass AGB star, or (3) the estimates of the temperatures in the convective shell that are given by extant models are too low by, sav, 10 or 15 percent.The absence of carbon stars more luminous than MBOL ∼ −6 is suggested to be due primarily to the fact that ∼ 106 yr of AGB evolution is necessary to produce surface C/O > 1, rather than to be due to the burning of dredged-up carbon into nitrogen at the base of the convective envelope during the interpulse quiescent hydrogen-burning phase. Thus, the positive correlation between the nitrogen and helium abundances in planetary nebulae is perhaps primarily a consequence of the second dredge-up episode rather than a consequence of processes occurring during the thermally pulsing phase.


Sign in / Sign up

Export Citation Format

Share Document