scholarly journals Formulation and Solution of an Inverse Reliability Problem to Simulate the Dynamic Behavior of COVID-19 Pandemic

2021 ◽  
Vol 22 (1) ◽  
pp. 91-107
Author(s):  
F. S. Lobato ◽  
G. M. Platt ◽  
G. B. Libotte ◽  
A. J. Silva Neto

Different types of mathematical models have been used to predict the dynamic behavior of the novel coronavirus (COVID-19). Many of them involve the formulation and solution of inverse problems. This kind of problem is generally carried out by considering the model, the vector of design variables, and system parameters as deterministic values. In this contribution, a methodology based on a double loop iteration process and devoted to evaluate the influence of uncertainties on inverse problem is evaluated. The inner optimization loop is used to find the solution associated with the highest probability value, and the outer loop is the regular optimization loop used to determine the vector of design variables. For this task, we use an inverse reliability approach and Differential Evolution algorithm. For illustration purposes, the proposed methodology is applied to estimate the parameters of SIRD (Susceptible-Infectious-Recovery-Dead) model associated with dynamic behavior of COVID-19 pandemic considering real data from China's epidemic and uncertainties in the basic reproduction number (R0). The obtained results demonstrate, as expected, that the increase of reliability implies the increase of the objective function value.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Fran Sérgio Lobato ◽  
Gustavo Barbosa Libotte ◽  
Gustavo Mendes Platt

Traditionally, the identification of parameters in the formulation and solution of inverse problems considers that models, variables, and mathematical parameters are free of uncertainties. This aspect simplifies the estimation process, but does not consider the influence of relatively small changes in the design variables in terms of the objective function. In this work, the SIDR (Susceptible, Infected, Dead, and Recovered) model is used to simulate the dynamic behavior of the novel coronavirus disease (COVID-19), and its parameters are estimated by formulating a robust inverse problem, that is, considering the sensitivity of design variables. For this purpose, a robust multiobjective optimization problem is formulated, considering the minimization of uncertainties associated with the estimation process and the maximization of the robustness parameter. To solve this problem, the Multiobjective Stochastic Fractal Search algorithm is associated with the Effective Mean concept for the evaluation of robustness. The results obtained considering real data of the epidemic in China demonstrate that the evaluation of the sensitivity of the design variables can provide more reliable results.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 18
Author(s):  
Marouane Mahrouf ◽  
Adnane Boukhouima ◽  
Houssine Zine ◽  
El Mehdi Lotfi ◽  
Delfim F. M. Torres ◽  
...  

The novel coronavirus disease (COVID-19) pneumonia has posed a great threat to the world recent months by causing many deaths and enormous economic damage worldwide. The first case of COVID-19 in Morocco was reported on 2 March 2020, and the number of reported cases has increased day by day. In this work, we extend the well-known SIR compartmental model to deterministic and stochastic time-delayed models in order to predict the epidemiological trend of COVID-19 in Morocco and to assess the potential role of multiple preventive measures and strategies imposed by Moroccan authorities. The main features of the work include the well-posedness of the models and conditions under which the COVID-19 may become extinct or persist in the population. Parameter values have been estimated from real data and numerical simulations are presented for forecasting the COVID-19 spreading as well as verification of theoretical results.


2021 ◽  
pp. 1-16
Author(s):  
Anca Butiuc-Keul ◽  
Anca Farkas ◽  
Rahela Carpa ◽  
Dumitrana Iordache

Being frequently exposed to foreign nucleic acids, bacteria and archaea have developed an ingenious adaptive defense system, called CRISPR-Cas. The system is composed of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) array, together with CRISPR (<i>cas</i>)-associated genes. This system consists of a complex machinery that integrates fragments of foreign nucleic acids from viruses and mobile genetic elements (MGEs), into CRISPR arrays. The inserted segments (spacers) are transcribed and then used by cas proteins as guide RNAs for recognition and inactivation of the targets. Different types and families of CRISPR-Cas systems consist of distinct adaptation and effector modules with evolutionary trajectories, partially independent. The origin of the effector modules and the mechanism of spacer integration/deletion is far less clear. A review of the most recent data regarding the structure, ecology, and evolution of CRISPR-Cas systems and their role in the modulation of accessory genomes in prokaryotes is proposed in this article. The CRISPR-Cas system&apos;s impact on the physiology and ecology of prokaryotes, modulation of horizontal gene transfer events, is also discussed here. This system gained popularity after it was proposed as a tool for plant and animal embryo editing, in cancer therapy, as antimicrobial against pathogenic bacteria, and even for combating the novel coronavirus – SARS-CoV-2; thus, the newest and promising applications are reviewed as well.


2017 ◽  
Vol 52 (14) ◽  
pp. 1971-1986 ◽  
Author(s):  
T Vo-Duy ◽  
T Truong-Thi ◽  
V Ho-Huu ◽  
T Nguyen-Thoi

The paper presents an efficient numerical optimization approach to deal with the optimization problem for maximizing the fundamental frequency of laminated functionally graded carbon nanotube-reinforced composite quadrilateral plates. The proposed approach is a combination of the cell-based smoothed discrete shear gap method (CS-DSG3) for analyzing the first natural frequency of the functionally graded carbon nanotube reinforced composite plates and a global optimization algorithm, namely adaptive elitist differential evolution algorithm (aeDE), for solving the optimization problem. The design variables are the carbon nanotube orientation in the layers and constrained in the range of integer numbers belonging to [−900 900]. Several numerical examples are presented to investigate optimum design of quadrilateral laminated functionally graded carbon nanotube reinforced composite plates with various parameters such as carbon nanotube distribution, carbon nanotube volume fraction, boundary condition and number of layers.


2018 ◽  
Vol 40 (4) ◽  
pp. 407-424
Author(s):  
Tran Thien Huan ◽  
Ho Pham Huy Anh

This paper proposes a new way to optimize the biped walking gait design for biped robots that permits stable and robust stepping with pre-set foot lifting magnitude. The new meta-heuristic CFO-Central Force Optimization algorithm is initiatively applied to optimize the biped gait parameters as to ensure to keep biped robot walking robustly and steadily. The efficiency of the proposed method is compared with the GA-Genetic Algorithm, PSO-Particle Swarm Optimization and Modified Differential Evolution algorithm (MDE). The simulated and experimental results carried on the prototype small-sized humanoid robot demonstrate that the novel meta-heuristic CFO algorithm offers an efficient and stable walking gait for biped robots with respect to a pre-set of foot-lift height value.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 290
Author(s):  
Anwarud Din ◽  
Amir Khan ◽  
Anwar Zeb ◽  
Moulay Rchid Sidi Ammi ◽  
Mouhcine Tilioua ◽  
...  

In this research, we provide a mathematical analysis for the novel coronavirus responsible for COVID-19, which continues to be a big source of threat for humanity. Our fractional-order analysis is carried out using a non-singular kernel type operator known as the Atangana-Baleanu-Caputo (ABC) derivative. We parametrize the model adopting available information of the disease from Pakistan in the period 9 April to 2 June 2020. We obtain the required solution with the help of a hybrid method, which is a combination of the decomposition method and the Laplace transform. Furthermore, a sensitivity analysis is carried out to evaluate the parameters that are more sensitive to the basic reproduction number of the model. Our results are compared with the real data of Pakistan and numerical plots are presented at various fractional orders.


2020 ◽  
Author(s):  
Yongmei Ding ◽  
Liyuan Gao

Abstract The novel coronavirus (COVID-19) that has been spreading worldwide since December 2019 has sickened millions of people, shut down major cities and some countries, prompted unprecedented global travel restrictions. Real data-driven modeling is an effort to help evaluate and curb the spread of the novel virus. Lockdowns and the effectiveness of reduction in the contacts in Italy has been measured via our modified model, with the addition of auxiliary and state variables that represent contacts, contacts with infected, conversion rate, latent propagation. Results show the decrease in infected people due to stay-at-home orders and tracing quarantine intervention. The effect of quarantine and centralized medical treatment was also measured through numerical modeling analysis.


Author(s):  
Eleftherios I. Amoiralis ◽  
Ioannis K. Nikolos

Freeform deformation (FFD) is a well established technique for 3D animation applications, used to deform two—or three-dimensional geometrical entities. Over the past few years, FFD technique has aroused growing interest in several scientific communities. In this work, an extensive bibliographic survey of the FFD technique is initially introduced, in order to explore its capabilities in shape parametrization. Moreover, FFD technique is compared to the classical parametrization technique using B-spline curves, in the context of the airfoil design optimization problem, by performing inverse airfoil design tests, with a differential evolution algorithm to serve as the optimizer. The criterion of the comparison between the two techniques is the achieved accuracy in the approximation of the reference pressure distribution. Experiments are presented, comparing FFD to B-spline techniques under the same flow conditions, for various numbers of design variables. Sensitivity analysis is applied for providing further insight into the differences in the performance of the two techniques.


Author(s):  
Nguyen Tran Hieu ◽  
Vu Anh Tuan

In this study, the differential evolution algorithm is used for solving the optimum design problem of composite cellular beams. The design variables are hot rolled profile from which the cellular beam will be produced as well as opening size and its spacing. The objective function is the minimum weight of cellular beam while the design constraints include satisfying the ultimate limit states, the serviceability limit states and the geometric limitations. The design method adopted in this study is based on EN 1994-1-1. Furthermore, a parametric study is conducted to evaluate the influence of beams spacing to the weight of floor beam system. As a result, an optimal spacing of composite cellular beams is proposed. Keywords: composite beam; cellular beam; web opening; steel beam optimization; differential evolution.


2021 ◽  
Vol 8 ◽  
Author(s):  
Setare Kheyrandish ◽  
Amirhossein Rastgar ◽  
Morteza Arab-Zozani ◽  
Gholamreza Anani Sarab

Background and Objective: Infection by the novel coronavirus disease 2019 (COVID-19) has been associated with different types of thrombotic complications same as portal vein thrombosis (PVT). However, by emerging vaccines of COVID, the thrombosis did not seem to be concerning anymore. Until new findings showed that, the vaccine of COVID itself can cause PVT.Method: We performed an electronic search in PubMed, Scopus, and Web of Sciences to evaluate the possibility of occurring PVT due to infection and vaccination of COVID-19. The results were reported in a narrative method and categorized into tables.Result: Overall, 40 cases of PVT from 34 studies were reviewed in this article. The prevalence of PVT following COVID-19 was more remarkable in males. However, it was more common in females after vaccinations of COVID-19 in the reviewed cases. Regardless of etiology, 20 of PVT cases reviewed in this article had at least one comorbidity. The most common clinical presentation was abdominal pain (AP). After anticoagulant therapies, most of the patients improved or discharged.Conclusion: As long as the laboratory findings are not appropriate enough to predict PVT, the diagnosis of this complication with whatever underlying reason is challengeable, while rapid diagnosis and treatment of that are vital. Therefore, by providing available data in an organized way, we aimed to prepare the information of infected patients for better and easier future diagnosis of PVT in new cases.


Sign in / Sign up

Export Citation Format

Share Document