High power in Advanced LIGO

2017 ◽  
Vol 13 (S338) ◽  
pp. 90-97
Author(s):  
Terra Hardwick ◽  

AbstractThe LIGO detectors have just completed a successful and exciting observation run. Both facilities are now undergoing upgrades and commissioning, including doubling the circulating power in the interferometer which will increase LIGO’s sensitivity above 100 Hz. This paper motivates the power increase and discusses the problems in general that arise with higher power and the progress to date with addressing them. Topics include input power noise coupling, parametric instability, and thermal effects.

2006 ◽  
Vol 113 ◽  
pp. 167-172
Author(s):  
Maik Mracek ◽  
Tobias Hemsel ◽  
Piotr Vasiljev ◽  
Jörg Wallaschek

Rotary ultrasonic motors have found broad industrial application in camera lens drives and other systems. Linear ultrasonic motors in contrast have only found limited applications. The main reason for the limited range of application of these very attractive devices seems to be their small force and power range. Attempts to build linear ultrasonic motors for high forces and high power applications have not been truly successful yet. To achieve drives, larger force and higher power, and multiple miniaturized motors can be combined. This approach, however, is not as simple as it appears at first glance. The electromechanical behavior of individual motors differs slightly due to manufacturing and assembly tolerances. Individual motor characteristics are strongly dependent on the driving parameters (frequency, voltage, temperature, pre-stress, etc.) and the driven load and the collective behavior of the swarm of motors is not just the linear superposition of the individual drive’s forces.


2011 ◽  
Vol 687 ◽  
pp. 215-221
Author(s):  
Yuan Yuan Han ◽  
Hong Guo ◽  
Xi Min Zhang ◽  
Fa Zhang Yin ◽  
Ke Chu ◽  
...  

With increasing of the input power of the chips in light emitting diode (LED), the thermal accumulation of LEDs package increases. Therefore solving the heat issue has become a precondition of high power LED application. In this paper, finite element method was used to analyze the thermal field of high power LEDs. The effect of the heatsink structure on the junction temperature was also investigated. The results show that the temperature of the chip is 95.8°C which is the highest, and it meets the requirement. The conductivity of each component affects the thermal resistance. Convective heat exchange is connected with the heat dissipation area. In the original structure of LEDs package the heat convected through the substrate is the highest, accounting for 92.58%. Three heatsinks with fin structure are designed to decrease the junction temperature of the LEDs package.


2013 ◽  
Vol 25 (2) ◽  
pp. 281-286
Author(s):  
赵钦 Zhao Qin ◽  
张海涛 Zhang Haitao ◽  
郑超 Zheng Chao ◽  
肖杰 Xiao Jie ◽  
陈倚竹 Chen Yizhu ◽  
...  

2019 ◽  
Vol 11 (7) ◽  
pp. 658-665
Author(s):  
Daniel Kienemund ◽  
Nicole Bohn ◽  
Thomas Fink ◽  
Mike Abrecht ◽  
Walter Bigler ◽  
...  

AbstractLow loss, ferroelectric, fully-printed varactors for high-power matching applications are presented. Piezoelectric-induced acoustic resonances reduce the power handling capabilities of these varactors by lowering the Q-factor at the operational frequency of 13.56 MHz. Here, a quality factor of maximum 142 is achieved with an interference-based acoustic suppression approach utilizing double metal–insulator–metal structures. The varactors show a tunability of maximum 34% at 300 W of input power. At a power level of 1 kW, the acoustic suppression technique greatly reduces the dissipated power by 62% from 37 W of a previous design to 14.2 W. At this power level, the varactors remain tunable with maximum 18.2% and 200 V of biasing voltage.


Sign in / Sign up

Export Citation Format

Share Document