Characterization and Properties of Earth-like Planets

2018 ◽  
Vol 14 (S345) ◽  
pp. 194-201
Author(s):  
Dániel Apai

AbstractThe search for life in the Universe is intertwined with studies of extrasolar planets aimed at identifying and understanding habitable rocky planets, including those similar in size, bulk composition, planetary environment, and evolution to Earth. The past five years have seen dramatic progress in our understanding of the small (1–4 REarth) planet population. Here we briefly review key results on the occurrence rates of small planets, the first evidence for compositional diversity of these worlds, early results on the characterization of their atmospheres, and the progress toward finding and interpreting potentially habitable planets orbiting the closest stars. We also briefly highlight next steps in furthering our understanding of the origins and properties of habitable worlds.

2019 ◽  
Vol 47 (1) ◽  
pp. 141-171 ◽  
Author(s):  
Daniel Jontof-Hutter

Low-mass planets have an extraordinarily diverse range of bulk compositions, from primarily rocky worlds to those with deep gaseous atmospheres. As techniques for measuring the masses of exoplanets advance the field toward the regime of rocky planets, from ultrashort orbital periods to Venus-like distances, we identify the bounds on planet compositions, where sizes and incident fluxes inform bulk planet properties. In some cases, the precision of measurement of planet masses and sizes is approaching the theoretical uncertainties in planet models. An emerging picture explains aspects of the diversity of low-mass planets, although some problems remain: Do extreme low-density, low-mass planets challenge models of atmospheric mass loss? Are planet sizes strictly separated by bulk composition? Why do some stellar characterizations differ between observational techniques? With the Transiting Exoplanet Survey Satellite ( TESS) mission, low-mass exoplanets around the nearest stars will soon be discovered and characterized with unprecedented precision, permitting more detailed planetary modeling and atmospheric characterization of low-mass exoplanets than ever before. ▪ Following the Kepler mission, studies of exoplanetary compositions have entered the terrestrial regime. ▪ Low-mass planets have an extraordinary range of compositions, from Earth-like mixtures of rock and metal to mostly tenuous gas. ▪ The TESS mission will discover low-mass planets that can be studied in more detail than ever before.


Author(s):  
Markus Janson ◽  
Thomas Henning ◽  
Sascha P. Quanz ◽  
Ruben Asensio-Torres ◽  
Lars Buchhave ◽  
...  

AbstractDirect detection and characterization of Earth-like planets around Sun-like stars is a core task for evaluating the prevalence of habitability and life in the Universe. Here, we discuss a promising option for achieving this goal, which is based on placing an occulter in orbit and having it project its shadow onto the E-ELT at the surface of Earth, thus providing a sufficient contrast for imaging and taking spectra of Earth-like planets in the habitable zones of Sun-like stars. Doing so at a sensible fuel budget will require tailored orbits, an occulter with a high area-to-mass ratio, and appropriate instrumentation at the E-ELT. In this White Paper, submitted in response to the ESA Voyage 2050 Call, we outline the fundamental aspects of the concept, and the most important technical developments that will be required to develop a full mission.


2004 ◽  
Vol 219 ◽  
pp. 80-84
Author(s):  
Pierre Kervella ◽  
Frédéric Thévenin ◽  
Pierre Morel ◽  
Janine Provost ◽  
Gabrielle Berthomieu ◽  
...  

Main Sequence (MS) stars are by far the most numerous class in the Universe. They are often somewhat neglected as they are relatively quiet objects (but exceptions exist), though they bear testimony of the past and future of our Sun. An important characteristic of the MS stars, particularly the solar-type ones, is that they host the large majority of the known extrasolar planets. Moreover, at the bottom of the MS, the red M dwarfs pave the way to understanding the physics of brown dwarfs and giant planets. We have measured very precise angular diameters from recent VINCI/VLTI interferometric observations of a number of MS stars in the K band, with spectral types between A1V and M5.5V. They already cover a wide range of effective temperatures and radii. Combined with precise Hipparcos parallaxes, photometry, spectroscopy as well as the asteroseismic information available for some of these stars, the angular diameters put strong constraints on the detailed models of these stars, and therefore on the physical processes at play.


1997 ◽  
Vol 23 (1) ◽  
pp. 251-262

The past three years have been extraordinarily productive for the Bioastronomy community. In particular, the detection of extrasolar planets and the possible evidence for fossil life on Mars have given substance to the concept of life elsewhere in the universe, and reinforced the connection between life on Earth and its cosmic origin. The structure of this report follows the agenda from the highly successful IAU Colloquium 161 on Bioastronomy, organized by Cristiano Cosmovici and Stuart Bowyer on the island of Capri in July 1996. The content has been provided by attendees of that Colloquium. Given the breadth of the subject matter covered by this Commission, this report could not have been generated any other way, and I am most grateful to all the contributors.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
William Lane Craig

A survey of recent philosophical literature on the kalam cosmological argument reveals that arguments for the finitude of the past and, hence, the beginning of the universe remain robust. Plantinga’s brief criticisms of Kant’s argument in his First Antinomy concerning time are shown not to be problematic for the kalam argument. This chapter addresses, one by one, the two premises of the kalam, focusing on their philosophical aspects. The notion of infinity, both actual and potential, is discussed in relation to the coming into being of the universe. In addition, the scientific aspects of the two premises are also, briefly, addressed. Among these are the Borde-Guth-Vilenkin theorem, which proves that classical space-time cannot be extended to past infinity but must reach a boundary at some time in the finite past. This, among other factors, lends credence to the kalam argument’s second premise.


Author(s):  
Sarah Lloyd

This chapter explores what we can know about the conceptualization and representation of by poorer Britons. It draws on ‘pauper letters’ to parish authorities, written tactically, and on autobiographies and letters composed by the relatively poor, noting echoes of the characterization of happiness by elite social commentators. It draws attention to a growing interest (linked to the development of the concept of nostalgia) in the emotional charge that could be derived from reflection on emotional experience as people contrasted past happiness with present misery, or vice versa. While reading such accounts may lead us to think that we are penetrating the interior lives of marginal people in the past, Lloyd suggests that our response is probably coloured by the fact that we are heirs to these ways of conceptualizing and representing experience. We need to work harder to glean insight from earlier ways of representing happiness and suffering.


Author(s):  
Gianfranco Pacchioni

About 10,000 years ago, at the beginning of the agriculturalrevolution, on the whole earth lived between 5 and 8 million hunter-gatherers, all belonging to the Homo sapiens species. Five thousand years later, freed from the primary needs for survival, some belonging to that species enjoyed the privilege of devoting themselves to philosophical speculation and the search for transcendental truths. It was only in the past two hundred years, however, with the advent of the Industrial Revolution, that reaping nature’s secrets and answering fundamental questions posed by the Universe have become for many full-time activities, on the way to becoming a real profession. Today the number of scientists across the globe has reached and exceeded 10 million, that is, more than the whole human race 10,000 years ago. If growth continues at the current rate, in 2050 we will have 35 million people committed full-time to scientific research. With what consequences, it remains to be understood. For almost forty years I myself have been concerned with science in a continuing, direct, and passionate way. Today I perceive, along with many colleagues, especially of my generation, that things are evolving and have changed deeply, in ways unimaginable until a few years ago and, in some respects, not without danger. What has happened in the world of science in recent decades is more than likely a mirror of a similar and equally radical transformation taking place in modern society, particularly with the advent ...


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


Author(s):  
Donald C. Williams

This chapter is about the arrow or direction of time against the backdrop of the pure manifold theory. It is accepted that the fact that time has a direction ought to be explained. It is proposed that the arrow of time is grounded in deeper facts about the four-dimensional nature of each object in the manifold and in facts about the overall four-dimensional shape of the universe. Towards the end of the chapter the possibility of time travel is discussed. It is argued that time travel is metaphysically possible and that there is a reasonable and intelligible sense in which a time traveler can and cannot change the past, according to the pure manifold theory.


Sign in / Sign up

Export Citation Format

Share Document