scholarly journals VINCI/VLTI Observations of Main Sequence Stars

2004 ◽  
Vol 219 ◽  
pp. 80-84
Author(s):  
Pierre Kervella ◽  
Frédéric Thévenin ◽  
Pierre Morel ◽  
Janine Provost ◽  
Gabrielle Berthomieu ◽  
...  

Main Sequence (MS) stars are by far the most numerous class in the Universe. They are often somewhat neglected as they are relatively quiet objects (but exceptions exist), though they bear testimony of the past and future of our Sun. An important characteristic of the MS stars, particularly the solar-type ones, is that they host the large majority of the known extrasolar planets. Moreover, at the bottom of the MS, the red M dwarfs pave the way to understanding the physics of brown dwarfs and giant planets. We have measured very precise angular diameters from recent VINCI/VLTI interferometric observations of a number of MS stars in the K band, with spectral types between A1V and M5.5V. They already cover a wide range of effective temperatures and radii. Combined with precise Hipparcos parallaxes, photometry, spectroscopy as well as the asteroseismic information available for some of these stars, the angular diameters put strong constraints on the detailed models of these stars, and therefore on the physical processes at play.

1999 ◽  
Vol 170 ◽  
pp. 121-130
Author(s):  
G. W. Marcy ◽  
R. Paul Butler ◽  
D. A. Fischer

AbstractWe have measured the radial velocities of 540 G and K main sequence stars with a precision of 3−10 ms−1 using the Lick and Keck échelle spectrometers. We had detected 6 companions that have m sin i < 7 MJup. We announce here the discovery of a new planet around Gliese 876, found in our Doppler measurements from both Lick and Keck. This is the first planet found around an M dwarf, which indicates that planets occur around low-mass stars, in addition to solar-type stars. We combine our entire stellar sample with that of Mayor et al. to derive general properties of giant planets within a few AU of these stars. Less than 1% of G and K main sequence stars harbor brown dwarf companions with masses between 5 and 70 MJup. Including Gliese 876b, 8 companions exhibit m sin i < 5 MJup which constitute the best planet candidates to date. Apparently, 4% of stars have planetary companions within the range m sin i = 0.5 to 5 MJup. Planets are distinguished from brown dwarfs by the discontinuous jump in the mass function at 5 MJup. About 2/3 of the planets orbit within just 0.3 AU due in part to their favorable detectability, but also possibly due to a real “pile up” of planets near the star. Inward orbital migration after formation may explain this, but the mechanism to stop the migration remains unclear. Five of eight planets have orbital eccentricities greater than that of our Jupiter, eJup = 0.048, and tidal circularization may explain most of the circular orbits. Thus, eccentric orbits are common and may arise from gravitational interactions with other planets, stars, or the protoplanetary disk. The planet-bearing stars are systematically metal-rich, as is the Sun, compared to the solar neighborhood.


2018 ◽  
Vol 612 ◽  
pp. A108 ◽  
Author(s):  
A.-M. Lagrange ◽  
M. Keppler ◽  
N. Meunier ◽  
J. Lannier ◽  
H. Beust ◽  
...  

Context. The search for extrasolar planets has been limited so far to close orbit (typ. ≤5 au) planets around mature solar-type stars on the one hand, and to planets on wide orbits (≥10 au) around young stars on the other hand. To get a better view of the full giant planet population, we have started a survey to search for giant planets around a sample of carefully selected young stars. Aims. This paper aims at exploring the giant planet population around one of our targets, β Pictoris, over a wide range of separations. With a disk and a planet already known, the β Pictoris system is indeed a very precious system for studies of planetary formation and evolution, as well as of planet–disk interactions. Methods. We analyse more than 2000 HARPS high-resolution spectra taken over 13 years as well as NaCo images recorded between 2003 and 2016. We combine these data to compute the detection probabilities of planets throughout the disk, from a fraction of au to a few dozen au. Results. We exclude the presence of planets more massive than 3 MJup closer than 1 au and further than 10 au, with a 90% probability. 15+ MJup companions are excluded throughout the disk except between 3 and 5 au with a 90% probability. In this region, we exclude companions with masses larger than 18 (resp. 30) MJup with probabilities of 60 (resp. 90) %.


2018 ◽  
Author(s):  
Anil Seth

At the birth of psychology as a science, consciousness was its central problem. But throughout the twentieth century, ideological and methodological concerns pushed the explicit empirical study of consciousness to the sidelines. Since the 1990s, studying consciousness has regained a legitimacy and impetus befitting its status as the central feature of our mental lives. Nowadays consciousness science encompasses a rich interdisciplinary mixture drawing together philosophical, theoretical, computational, experimental, and clinical perspectives. While solving the metaphysically ‘hard’ problem of why consciousness is part of the universe may seem as intractable as ever, scientists have learned a great deal about the neural mechanisms underlying conscious states. Further progress will depend on specifying closer explanatory mappings between (first person subjective) phenomenological descriptions and (third person objective) descriptions of biological and physical processes. Such progress will help reframe our understanding of our place in nature, and may also accelerate clinical approaches to a wide range of psychiatric and neurological disorders.


2009 ◽  
Vol 5 (S268) ◽  
pp. 387-394
Author(s):  
Sylvie Vauclair

AbstractAsteroseismology is a powerful tool to derive stellar parameters, including the helium content and internal helium gradients, and the macroscopic motions which can lead to lithium, beryllium, and boron abundance variations. Precise determinations of these parameters need deep analyses for each individual stars. After a general introduction on helio and asteroseismology, I first discuss the solar case, the results which have been obtained in the past two decades, and the crisis induced by the new determination of the abundances of heavy elements. Then I discuss asteroseismology in relation with light element abundances, especially for the case of main sequence stars.


1973 ◽  
Vol 50 ◽  
pp. 52-59
Author(s):  
W. Gliese

By examining the observed dispersion in (colour, spectral type) relations, classification errors have been derived from the data of nearby stars. The comparisons of the colour deviations observed in spectral regions of large variations of colour with type with the deviations in regions of small variations give the following standard errors in units of a tenth of a spectral class: For K dwarfs ±0.6 (MK), ±1.2 (Mt. Wilson), ±0.7 (Kuiper); for early M dwarfs ±0.9: (MK), ±0.7 (Mt. Wilson), ±0.5: (Kuiper); and for late M dwarfs ±0.7 (Kuiper).


2011 ◽  
Vol 7 (S282) ◽  
pp. 199-200
Author(s):  
Krisztián Vida ◽  
Katalin Oláh ◽  
Zsolt Kővári

AbstractV405 And is an ultrafast-rotating (Prot ≈ 0.46 days) eclipsing binary. The system consists of a primary star with radiative core and convective envelope, and a fully convective secondary. Theories have shown that stellar structure can depend on magnetic activity, i.e., magnetically active M-dwarfs should have larger radii. Earlier light curve modelling of V405 And indeed showed this behaviour: we found that the radius of the primary is significantly larger than the theoretically predicted value for inactive main sequence stars (the discrepancy is the largest of all known objects), while the secondary fits well to the mass-radius relation. By modelling our recently obtained light curves, which show significant changes of the spotted surface of the primary, we can find further proof for this phenomenon.


2010 ◽  
Vol 6 (S276) ◽  
pp. 54-59
Author(s):  
Amaya Moro-Martín

AbstractMain sequence stars are commonly surrounded by disks of dust. From lifetime arguments, it is inferred that the dust particles are not primordial but originate from the collision of planetesimals, similar to the asteroids, comets and KBOs in our Solar system. The presence of these debris disks around stars with a wide range of masses, luminosities, and metallicities, with and without binary companions, is evidence that planetesimal formation is a robust process that can take place under a wide range of conditions. Debris disks can help us learn about the formation, evolution and diversity of planetary systems.


2020 ◽  
Vol 501 (1) ◽  
pp. 507-514 ◽  
Author(s):  
Christopher E O’Connor ◽  
Bin Liu ◽  
Dong Lai

ABSTRACT We investigate the possible origin of the transiting giant planet WD 1856+534 b, the first strong exoplanet candidate orbiting a white dwarf, through high-eccentricity migration (HEM) driven by the Lidov–Kozai (LK) effect. The host system’s overall architecture is a hierarchical quadruple in the ‘2 + 2’ configuration, owing to the presence of a tertiary companion system of two M-dwarfs. We show that a secular inclination resonance in 2 + 2 systems can significantly broaden the LK window for extreme eccentricity excitation (e ≳ 0.999), allowing the giant planet to migrate for a wide range of initial orbital inclinations. Octupole effects can also contribute to the broadening of this ‘extreme’ LK window. By requiring that perturbations from the companion stars be able to overcome short-range forces and excite the planet’s eccentricity to e ≃ 1, we obtain an absolute limit of $a_{1} \gtrsim 8 \, \mathrm{au}\, (a_{3} / 1500 \, \mathrm{au})^{6/7}$ for the planet’s semimajor axis just before migration (where a3 is the semimajor axis of the ‘outer’ orbit). We suggest that, to achieve a wide LK window through the 2 + 2 resonance, WD 1856 b likely migrated from $30 \, \mathrm{au}\lesssim a_{1} \lesssim 60 \, \mathrm{au}$, corresponding to ∼10–$20 \, \mathrm{au}$ during the host’s main-sequence phase. We discuss possible difficulties of all flavours of HEM affecting the occurrence rate of short-period giant planets around white dwarfs.


1985 ◽  
Vol 111 ◽  
pp. 523-524
Author(s):  
L. Pastori ◽  
G. Malaspina

Angular diameters of 593 B5-F5 main sequence stars listed in the “Catalogue of apparent diameters and absolute radii of stars” (CADARS; Fracassini et al. 1981) have been analysed in order to improve the precision of the visual surface brightness Sv. The new relations between this quantity and the color index (B-V)o turn out to be in good agreement with those found with the interferometric method (Barnes et al. 1978). Moreover, the results suggest that surface gravity effects may bias the Sv-(B-V)o relations.


2003 ◽  
Vol 210 ◽  
pp. 143-156
Author(s):  
F. Kupka

We present an overview of the concepts underlying advanced non-local Reynolds stress models of turbulent convection and review a comparison of this approach with a series of numerical simulations of fully compressible convection. We then discuss results from applications of the model to complete envelopes of A-type main sequence stars. The non-local model reproduces surface velocities in agreement with the lower limit of observed macro- and microturbulence velocities of A-star photospheres, the asymmetry of the surface velocity field as inferred from spectral line profiles, and the overall structure of the photospheric and subphotospheric convection zones, as predicted by the most recent numerical simulations available for these stars. Traditionally, local models of convection are unable to do so. We conclude with a brief survey of extensions of the model which are interesting for other applications such as atmospheres of solar type stars and overshooting below deep convective envelopes or above the core in massive stars.


Sign in / Sign up

Export Citation Format

Share Document