scholarly journals Lessons from the local Universe

2019 ◽  
Vol 15 (S352) ◽  
pp. 315-315
Author(s):  
Daniel Weisz

AbstractResolved galaxies in the local Universe are fundamentally connected to galaxies observed at all cosmic epochs. The IMF, extinction law, distance ladder, and stellar evolution are all anchored in observations of resolved stars in the nearby Universe. In this talk, I highlight new links between resolved galaxies and those in the higher redshift Universe, and discuss how future observations of resolved stars are essential for a complete and accurate census of galaxy evolution across cosmic time.

2013 ◽  
Vol 9 (S296) ◽  
pp. 37-44
Author(s):  
Enrico Cappellaro

AbstractSupernova statistics, establishing a direct link between stellar populations and explosion scenarios, is a crucial test of stellar evolution theory. Nowadays, a number of SN searches in the local Universe and at high redshifts are allowing observational probes of long standing theoretical scenarios. I will briefly review some of the most interesting results in particular for what concern the evolution with cosmic time of the SN rate, which is one of the topic that in the last few years had a most rapid development.


2019 ◽  
Vol 15 (S359) ◽  
pp. 72-77
Author(s):  
Luigi Spinoglio ◽  
Juan A. Fernández-Ontiveros ◽  
Sabrina Mordini

AbstractThe evolution of galaxies at Cosmic Noon (1 < z < 3) passed through a dust-obscured phase, during which most stars formed and black holes in galactic nuclei started to shine, which cannot be seen in the optical and UV, but it needs rest frame mid-to-far IR spectroscopy to be unveiled. At these frequencies, dust extinction is minimal and a variety of atomic and molecular transitions, tracing most astrophysical domains, occur. The Space Infrared telescope for Cosmology and Astrophysics (SPICA), currently under evaluation for the 5th Medium Size ESA Cosmic Vision Mission, fully redesigned with its 2.5-m mirror cooled down to T < 8K will perform such observations. SPICA will provide for the first time a 3-dimensional spectroscopic view of the hidden side of star formation and black hole accretion in all environments, from voids to cluster cores over 90% of cosmic time. Here we outline what SPICA will do in galaxy evolution studies.


Author(s):  
Andrea Afruni ◽  
Filippo Fraternali ◽  
Gabriele Pezzulli

Abstract The characterization of the large amount of gas residing in the galaxy halos, the so called circumgalactic medium (CGM), is crucial to understand galaxy evolution across cosmic time. We focus here on the the cool (T ∼ 104 K) phase of this medium around star-forming galaxies in the local universe, whose properties and dynamics are poorly understood. We developed semi-analytical parametric models to describe the cool CGM as an outflow of gas clouds from the central galaxy, as a result of supernova explosions in the disc (galactic wind). The cloud motion is driven by the galaxy gravitational pull and by the interactions with the hot (T ∼ 106 K) coronal gas. Through a bayesian analysis, we compare the predictions of our models with the data of the COS-Halos and COS-GASS surveys, which provide accurate kinematic information of the cool CGM around more than 40 low-redshift star-forming galaxies, probing distances up to the galaxy virial radii. Our findings clearly show that a supernova-driven outflow model is not suitable to describe the dynamics of the cool circumgalactic gas. Indeed, to reproduce the data, we need extreme scenarios, with initial outflow velocities and mass loading factors that would lead to unphysically high energy coupling from the supernovae to the gas and with supernova efficiencies largely exceeding unity. This strongly suggests that, since the outflows cannot reproduce most of the cool gas absorbers, the latter are likely the result of cosmological inflow in the outer galaxy halos, in analogy to what we have previously found for early-type galaxies.


2006 ◽  
Vol 2 (S235) ◽  
pp. 230-230
Author(s):  
Ivelina Momcheva ◽  
Kurtis Williams ◽  
Ann Zabludoff ◽  
Charles Keeton

AbstractPoor groups are common and interactive environments for galaxies, and thus are important laboratories for studying galaxy evolution. Unfortunately, little is known about groups at z ≥ 0.1, because of the difficulty in identifying them in the first place. Here we present results from our ongoing survey of the environments of strong gravitational lenses, in which we have so far discovered six distant (z ≥ 0.5) groups of galaxies. As in the local Universe, the highest velocity dispersion groups contain a brightest member spatially coincident with the group centroid, whereas lower-dispersion groups tend to have an offset brightest group galaxy. This suggests that higher-dispersion groups are more dynamically relaxed than lower-dispersion groups and that at least some evolved groups exist by z ~ 0.5. We also compare the galaxy and hot gas kinematics with those of similarly distant clusters and of nearby groups.


Author(s):  
L. Spinoglio ◽  
A. Alonso-Herrero ◽  
L. Armus ◽  
M. Baes ◽  
J. Bernard-Salas ◽  
...  

AbstractIR spectroscopy in the range 12–230 μm with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA’s large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z ~ 6.


2009 ◽  
Vol 5 (S266) ◽  
pp. 58-63 ◽  
Author(s):  
Torsten Böker

AbstractThe centers of most galaxies in the local Universe are occupied by compact, barely resolved sources. Based on their structural properties, position in the Fundamental Plane, and integrated spectra, these sources clearly have a stellar origin. They are therefore called ‘nuclear star clusters’ (NCs) or ‘stellar nuclei’. NCs are found in galaxies of all Hubble types, suggesting that their formation is intricately linked to galaxy evolution. Here, I review some recent studies of NCs, describe ideas for their formation and subsequent growth, and touch on their possible evolutionary connection with both supermassive black holes and globular clusters.


2018 ◽  
Vol 619 ◽  
pp. A48 ◽  
Author(s):  
J. F. Radcliffe ◽  
M. A. Garrett ◽  
T. W. B. Muxlow ◽  
R. J. Beswick ◽  
P. D. Barthel ◽  
...  

Context. The occurrence of active galactic nuclei (AGN) is critical to our understanding of galaxy evolution and formation. Radio observations provide a crucial, dust-independent tool to study the role of AGN. However, conventional radio surveys of deep fields ordinarily have arc-second scale resolutions often insufficient to reliably separate radio emission in distant galaxies originating from star-formation and AGN-related activity. Very long baseline interferometry (VLBI) can offer a solution by identifying only the most compact radio emitting regions in galaxies at cosmological distances where the high brightness temperatures (in excess of 105 K) can only be reliably attributed to AGN activity. Aims. We present the first in a series of papers exploring the faint compact radio population using a new wide-field VLBI survey of the GOODS-N field. This will expand upon previous surveys, permitting the characterisation of the faint, compact radio source population in the GOODS-N field. The unparalleled sensitivity of the European VLBI Network (EVN) will probe a luminosity range rarely seen in deep wide-field VLBI observations, thus providing insights into the role of AGN to radio luminosities of the order 1022 WHz−1 across cosmic time. Methods. The newest VLBI techniques are used to completely cover an entire 7′̣5 radius area to milliarcsecond resolutions, while bright radio sources (S > 0.1 mJy) are targeted up to 25′ from the pointing centre. Multi-source self-calibration, and a primary beam model for the EVN array are used to correct for residual phase errors and primary beam attenuation respectively. Results. This paper presents the largest catalogue of VLBI detected sources in GOODS-N comprising of 31 compact radio sources across a redshift range of 0.11–3.44, almost three times more than previous VLBI surveys in this field. We provide a machine-readable catalogue and introduce the radio properties of the detected sources using complementary data from the e-MERLIN Galaxy Evolution survey (eMERGE).


2021 ◽  
Vol 922 (2) ◽  
pp. 147
Author(s):  
Kasper E. Heintz ◽  
Darach Watson ◽  
Pascal A. Oesch ◽  
Desika Narayanan ◽  
Suzanne C. Madden

Abstract The H i gas content is a key ingredient in galaxy evolution, the study of which has been limited to moderate cosmological distances for individual galaxies due to the weakness of the hyperfine H i 21 cm transition. Here we present a new approach that allows us to infer the H i gas mass M HI of individual galaxies up to z ≈ 6, based on a direct measurement of the [C ii]-to-H i conversion factor in star-forming galaxies at z ≳ 2 using γ-ray burst afterglows. By compiling recent [C ii]-158 μm emission line measurements we quantify the evolution of the H i content in galaxies through cosmic time. We find that M HI starts to exceed the stellar mass M ⋆ at z ≳ 1, and increases as a function of redshift. The H i fraction of the total baryonic mass increases from around 20% at z = 0 to about 60% at z ∼ 6. We further uncover a universal relation between the H i gas fraction M HI/M ⋆ and the gas-phase metallicity, which seems to hold from z ≈ 6 to z = 0. The majority of galaxies at z > 2 are observed to have H i depletion times, t dep,HI = M HI/SFR, less than ≈2 Gyr, substantially shorter than for z ∼ 0 galaxies. Finally, we use the [C ii]-to-H i conversion factor to determine the cosmic mass density of H i in galaxies, ρ HI, at three distinct epochs: z ≈ 0, z ≈ 2, and z ∼ 4–6. These measurements are consistent with previous estimates based on 21 cm H i observations in the local universe and with damped Lyα absorbers (DLAs) at z ≳ 2, suggesting an overall decrease by a factor of ≈5 in ρ HI(z) from the end of the reionization epoch to the present.


2018 ◽  
Vol 14 (S344) ◽  
pp. 186-189
Author(s):  
P. Steyrleithner ◽  
G. Hensler ◽  
S. Recchi ◽  
S. Ploeckinger

AbstractIn recent years dedicated observations have uncovered star formation at extremely low rates in dwarf galaxies, tidal tails, ram-pressure stripped gas clouds, and the outskirts of galactic disks. At the same time, numerical simulations of galaxy evolution have advanced to higher spatial and mass resolutions, but have yet to account for the underfilling of the uppermost mass bins of stellar initial mass function (IMF) at low star-formation rates. In such situations, simulations may simply scale down the IMF, without realizing that this unrealistically results in fractions of massive stars, along with fractions of massive star feedback energy (e.g., radiation and SNII explosions). Not properly accounting for such parameters has consequences for the self-regulation of star formation, the energetics of galaxies, as well as for the evolution of chemical abundances. Here we present numerical simulations of dwarf galaxies with low star-formation rates allowing for two extreme cases of the IMF: a “filled” case with fractional massive stars vs. a truncated IMF, at which the IMF is built bottom-up until the gas reservoir allows the formation of a last single star at an uppermost mass. The aim of the study is to demonstrate the different effects on galaxy evolution with respect to self-regulation, feedback, and chemistry. The case of a stochastic sampled IMF is situated somewhere in between these extremes.


2010 ◽  
Vol 19 (08n10) ◽  
pp. 1371-1377
Author(s):  
T. P. IDIART ◽  
J. A. F. PACHECO ◽  
J. SILK

Elliptical galaxies are the best systems to study the early star formation activity in the universe. This work aims to understand the formation and evolution of these objects through the study of the integrated properties of their stellar populations. Here an evolutionary model is developed and their predicted spectrophotometric properties are presented.


Sign in / Sign up

Export Citation Format

Share Document