Effect of diet on dairy cow nitrogen balance and live weight change during the dry period

1996 ◽  
Vol 1996 ◽  
pp. 84-84
Author(s):  
J.M. Moorby ◽  
S. Miles ◽  
R.T. Evans ◽  
W.J. Fisher ◽  
D.W.R. Davies

Increases in yields of milk and milk protein have been observed from dairy cows offered a high protein supplement during the dry period (Van Saun et al., 1993; Moorby et al., 1994). One possible mechanism for this is a decrease in the mobilisation of maternal body protein to support foetal growth as more dietary protein is supplied and used for this purpose. This experiment was designed to investigate the effect of offering diets differing in protein concentration on whole body nitrogen balance in dairy cows and change in live weight (LW) and condition score (CS) over the dry period.

1996 ◽  
Vol 1996 ◽  
pp. 84-84
Author(s):  
J.M. Moorby ◽  
S. Miles ◽  
R.T. Evans ◽  
W.J. Fisher ◽  
D.W.R. Davies

Increases in yields of milk and milk protein have been observed from dairy cows offered a high protein supplement during the dry period (Van Saun et al., 1993; Moorby et al., 1994). One possible mechanism for this is a decrease in the mobilisation of maternal body protein to support foetal growth as more dietary protein is supplied and used for this purpose. This experiment was designed to investigate the effect of offering diets differing in protein concentration on whole body nitrogen balance in dairy cows and change in live weight (LW) and condition score (CS) over the dry period.


1996 ◽  
Vol 63 (2) ◽  
pp. 201-213 ◽  
Author(s):  
J. M. Moorby ◽  
R. J. Dewhurst ◽  
S. Marsden

AbstractEffects of feeding a protein supplement to dairy cows during the dry period on performance during the following lactation were investigated in two experiments. Holstein-Friesian cows were paired towards the end of lactation, and, after drying off, one of each pair received a typical dry cow management regime of ad libitum grass silage (experiment 1), or a mix of grass silage and distillers' grains or pressed beet pulp (experiment 2). The other cows were offered restricted access to the same basal diet, together with ad libitum access to barley straw and 0·5 kg/day high protein maize gluten meal. During the following lactation, animals from both groups were treated without reference to dry period treatment, and were offered equal access to the same lactation diet. Data were analysed by analysis of variance of experiment means and by parallel curve analysis using sample means. In experiment 1, milk yields were similar (27·2 v. 27·9 (s.e.d. 2·12) kg/day for control and supplemented animals respectively) but milk protein yields, and hence concentrations, were significantly higher (P < 0·001) from supplemented animals (28·9 v. 31·8 (s.e.d. 0·58) g/kg). In experiment 2, milk yields were significantly higher (P < 0·001) from supplemented animals (mean 33·3 v. 35·4 (s.e.d. 1·66) kg/day; however, milk protein yields were also significantly increased (P < 0·001) and the change in milk protein concentration was small. No difference in dry-matter intake was recorded in a subset of animals during early lactation in experiment 2. It is hypothesized that the maternal labile body protein pool was maintained or replenished during the dry period by the provision of the protein supplement, and that this had a significant effect on subsequent lactation performance.


1992 ◽  
Vol 54 (1) ◽  
pp. 7-13 ◽  
Author(s):  
P. C. Garnsworthy ◽  
C. D. Huggett

AbstractTwenty-four Friesian dairy cows were divided into two groups of 12 between 12 and 18 weeks prior to calving and fed to achieve condition scores at calving of 3·2 (F) or 2·3 (T). For the first 11 weeks of lactation, six cows from each group (H) were given daily 9 kg of a high-fat compound (acid ether extract (AEE) 96 g/kg dry matter (DM)), 3 kg molassed sugar-beet pulp and hay ad libitum. The other six cows in each group (L) were given 10 kg of a low-fat compound (AEE 29 g/kg DM), 2 kg sugar-beet pulp and hay ad libitum. Allowances of compound and sugar-beet pulp were designed to provide equal amounts of energy, neutral-detergent fibre and protein. The fat source used in compound H was a calcium salt of palm acid oil (Megalac®).DM intake was not affected by treatment but fat intake was significantly higher on diet H (P < 0·001). Group TH had higher intakes of digestible energy (DE) than group FH (249 v. 229 MJ/day; P < 0·05), but condition at calving did not affect DE intake with diet L (FL = 230, TL = 233 MJ/day). Milk yield was not significantly affected by treatment, although cows in group TL tended to yield less milk than other groups (28·3, 27·3, 28·0 and 24·3 kg/day for FH, FL, TH and TL respectively). The concentration of milk fat was higher and of milk protein lower with diet H compared with diet L (milk fat 48·1, 42·2, 42·9 and 39·6; milk protein 28·0, 31·0, 28·4 and 30·5 g/kg for FH, FL, TH and TL respectively). Loss of condition score was greater for cows in group F (0·65 units) than for those in group T (0·04 units). Within group F, loss of condition tended to be greater with diet L.It is concluded that the increased intake of fat with diet H tended to decrease loss of condition in cows that were fat at calving but increase milk yield in cows that were thin at calving. It also tended to increase milk fat concentration but decreased milk protein concentration.


1984 ◽  
Vol 39 (1) ◽  
pp. 17-23 ◽  
Author(s):  
J. S. Chalmers ◽  
F. R. Moisey ◽  
J. D. Leaver

ABSTRACTIn two experiments cows with access to self-feed grass silage were offered concentrates either twice daily in the milking parlour at a fixed level (controls) or in addition given free-access to a concentrate dispenser sited in the self-feed area (dispenser). A time-lapse mechanism on the dispenser limited successive 1 kg feeds to a minimum of 10 min in experiment 1 and 5 min in experiment 2. The ‘dispenser’ cows had significantly greater total concentrate intakes than had the controls (10·4 v. 7·1 kg/day in experiment 1, 13·4 v. 7·3 kg/day in experiment 2), but there was a large variation in intake between individuals. Access to the dispenser increased milk yields only slightly, reduced milk fat concentration and increased milk protein concentration and live-weight gain. Following turnout to grass in the spring, there was evidence that the cows that had been on the dispenser treatment showed a faster rate of decline in milk yield than did the controls, and this was supported by lower lactation yields in the dispenser group.


1990 ◽  
Vol 51 (2) ◽  
pp. 418-421 ◽  
Author(s):  
G. A. Lynch ◽  
M. E. Hunt ◽  
S. N. McCutcheon

The effects of monensin sodium, administered by intraruminal controlled-release devices at a rate of 320 mglday, on milk and milk solids production and bloat score were examined in a trial with 90 lactating dairy cows given only mixed ryegrasslwhite clover pasture. Monensintreated cows had significantly greater yields of milk and milk protein than control cows (1397·2 (s.e. 22·9) v. 1296·9 (s.e. 16·3) kg milk, 49·6 (s.e. 0·9) v. 46·5 (s.e. 0·6) kg protein) over the 14-week period of treatment (P < 0·01). Yield of fat was similar in monensin-treated and control cows (62·9 (s.e. 1·5) v. 63·4 (s.e. 1·1) kg). Live weight, condition score and bloat score were not influenced by treatment but pasture conditions were not conducive to severe bloat challenge.


2001 ◽  
Vol 2001 ◽  
pp. 202-202 ◽  
Author(s):  
G. Jaurena ◽  
J. M. Moorby ◽  
W. J. Fisher ◽  
D. W. R. Davies

Body fat and protein reserves at calving can affect milk production and composition (Garnsworthy, 1988; Moorbyet al., 1996). Milk producers frequently feed their dry cows with a low quality diet to prevent them from becoming too fat before calving. However, the cow must nourish the foetus and develop mammary secretory tissues, which can be a problem if she is offered a low protein diet. This experiment was designed to test the interaction between energy and protein supplies during the dry period on changes in live weight (LW), condition score (CS) and muscleLongissimus dorsidepth (LD). Subsequent milk production and composition data are reported in a separate summary (Jaurenaet al., 2001).


1984 ◽  
Vol 103 (2) ◽  
pp. 323-331 ◽  
Author(s):  
R. H. Phipps ◽  
J. A. Bines ◽  
R. F. Weller ◽  
Joanne Thomas

SUMMARYNinety-two British Friesians (56 cows and 36 heifers) were divided into two groups during weeks 3–10 of lactation and received ad libitum either complete diet H (65% concentrates, 35% grass silage, 11·7 MJ ME/kg D.M.) or diet M (50% concentrates, 50% grass silage, 11·2 MJ ME/kg D.M.). In weeks 11· 20 half the animals of each group continued to receive the same diet (HH or MM) while the other half were changed from diet H to M (HM) or from diet M to L (ML). Diet L contained 35% concentrates, 65% grass silage and 10·7 MJ ME/kg D.M. The crude protein concentration of all diets was maintained at about 157 g/kg D.M. by the addition of soya-bean meal to diets M and L.During weeks 3–10 the mean D.M. intake (kg/day), milk yield (kg/day), milk protein (g/kg) and live-weight change (kg/day) for animals on diets H and M were 15·0, 21·7, 33·3, 0·50 and 12·9, 20·2, 31·5, 0·35 respectively. Differences were significant for D.M. intake, milk yield and milk protein concentration. Although milk-fat concentration of cows given diet H (40·2 g/kg) was similar to that of cows given diet M (39·9 g/kg), heifers receiving diet H had a significantly lower value (37·0 g/kg) than those given diet M (39·8 g/kg).When animals were changed from diet H to M or from M to L at week 11, D.M. intake, milk yield and milk-protein concentration decreased. However, milk-fat concentration and live-weight change were generally unaffected.During the complete experimental period, weeks 3–20, animals on treatments HH, HM, MM and ML had mean D.M. intakes and milk yields of 15·3, 14·2, 13·2, 12·4 kg/day and 19·7, 18·5, 17·8, 17·0 kg/day. Milk-protein concentration, was closely related to D.M. intake, but only with heifers did diet H significantly depress milk-fat concentration. The highest live-weight gain was recorded on treatment HH (0·40 kg/day) and the lowost on treatment ML (0·29 kg/day) with intermediate values for treatments HM and MM.In vivodigestibility coefficients of D.M. and organic matter for diet H (0·731, 0·757) were significantly higher than those of diet L (0·707, 0·734) with intermediate values for diet M. However, for acid-detergent fibre the digestibility coefficient for diet H was significantly lower (0·562) than for diet L (0·662). The digestibility coefficients for nitrogen in all three diets were similar.Estimates of mean efficiency of utilization of ME for lactation were made on a weekly basis and were 0·56 and 0·64 for animals on diets H and M in weeks 3·10. During weeks 11·20 the mean values for animals on treatments HH, HM, MM and ML were 0·46, 0·53, 0·51 and 0·59, respectively.


1993 ◽  
Vol 265 (3) ◽  
pp. E402-E413 ◽  
Author(s):  
S. Tesseraud ◽  
J. Grizard ◽  
E. Debras ◽  
I. Papet ◽  
Y. Bonnet ◽  
...  

Early lactating goats show insulin resistance with respect to extramammary glucose utilization. However, much less is known about the two major factors, insulin and plasma amino acid concentration, that regulate protein metabolism in lactating goats. To examine this question, the in vivo effect of acute insulin was studied in goats during early lactation (12-31 days postpartum), midlactation (98-143 days postpartum), and the dry period (approximately 1 yr postpartum). Insulin was infused (at 0.36 or 1.79 nmol/min) under euglycemic and eukaliemic clamps. In addition, appropriate amino acid infusion was used to blunt insulin-induced hypoaminoacidemia or to create hyperaminoacidemia and maintain this condition under insulin treatment. Leucine kinetics were assessed using a primed continuous infusion of L-[1-14C]-leucine, which started 2.5 h before insulin. In all animals the insulin treatments failed to stimulate the nonoxidative leucine disposal (an estimate of whole body protein synthesis) under both euaminoacidemic and hyperaminoacidemic conditions. Thus, in goat as well as humans, infusion of insulin fails to stimulate protein synthesis even when combined with a substantially increased provision of amino acids. In contrast, insulin treatments caused a dose-dependent inhibition of the endogenous leucine appearance (an estimate of whole body protein degradation). Under euaminoacidemia the initial slope from the plot of the endogenous leucine appearance as a function of plasma insulin (an insulin sensitivity index) was steeper during early lactation than when compared with the dry period. A similar trend occurred during midlactation but not to any significant degree. These differences were abolished under hyperaminoacidemia. It was concluded that the ability of physiological insulin to inhibit protein degradation was improved during lactation, demonstrating a clear-cut dissociation between the effects of insulin on protein and glucose metabolism. This adaptation no doubt may provide a mechanism to save body protein.


1996 ◽  
Vol 62 (1) ◽  
pp. 1-3 ◽  
Author(s):  
P. C. Garnsworthy

AbstractTwenty-eight Holstein/Friesian dairy cows were divided into four groups of seven. From weeks 4 to 15 of lactation they were given a basal diet consisting of 8 kg hay, 2 kg sugar-beet feed and 2 kg grass nuts, together with a concentrate allowance of 8 kg/day. Concentrates for group A were based on cereals and soya (control). Concentrate B contained 60 g protected fat supplement per kg; concentrate C contained 100 g lactose per kg; concentrate D contained 60 g fat supplement and 100 g lactose per kg. Milk yields were 24·6, 27·7, 25·6 and 26·5 kg/day and milk protein concentrations were 32·3, 30·7, 32·7 and 31·9 g/kg for groups A, B, C and D respectively. The effect of fat supplementation on milk yield and protein concentration was significant (P < 0·05) but the effect of lactose was not significant. Milk fat concentration was not significantly affected by treatment. It is concluded that lactose can partially alleviate the depression in milk protein concentration often observed when cows are given protected fat.


Sign in / Sign up

Export Citation Format

Share Document