Leucine metabolism in lactating and dry goats: effect of insulin and substrate availability

1993 ◽  
Vol 265 (3) ◽  
pp. E402-E413 ◽  
Author(s):  
S. Tesseraud ◽  
J. Grizard ◽  
E. Debras ◽  
I. Papet ◽  
Y. Bonnet ◽  
...  

Early lactating goats show insulin resistance with respect to extramammary glucose utilization. However, much less is known about the two major factors, insulin and plasma amino acid concentration, that regulate protein metabolism in lactating goats. To examine this question, the in vivo effect of acute insulin was studied in goats during early lactation (12-31 days postpartum), midlactation (98-143 days postpartum), and the dry period (approximately 1 yr postpartum). Insulin was infused (at 0.36 or 1.79 nmol/min) under euglycemic and eukaliemic clamps. In addition, appropriate amino acid infusion was used to blunt insulin-induced hypoaminoacidemia or to create hyperaminoacidemia and maintain this condition under insulin treatment. Leucine kinetics were assessed using a primed continuous infusion of L-[1-14C]-leucine, which started 2.5 h before insulin. In all animals the insulin treatments failed to stimulate the nonoxidative leucine disposal (an estimate of whole body protein synthesis) under both euaminoacidemic and hyperaminoacidemic conditions. Thus, in goat as well as humans, infusion of insulin fails to stimulate protein synthesis even when combined with a substantially increased provision of amino acids. In contrast, insulin treatments caused a dose-dependent inhibition of the endogenous leucine appearance (an estimate of whole body protein degradation). Under euaminoacidemia the initial slope from the plot of the endogenous leucine appearance as a function of plasma insulin (an insulin sensitivity index) was steeper during early lactation than when compared with the dry period. A similar trend occurred during midlactation but not to any significant degree. These differences were abolished under hyperaminoacidemia. It was concluded that the ability of physiological insulin to inhibit protein degradation was improved during lactation, demonstrating a clear-cut dissociation between the effects of insulin on protein and glucose metabolism. This adaptation no doubt may provide a mechanism to save body protein.

1985 ◽  
Vol 54 (3) ◽  
pp. 681-694 ◽  
Author(s):  
G. E. Lobley ◽  
Alexmary Connell ◽  
G. S. Mollison ◽  
A. Brewer ◽  
C. I. HARRIS ◽  
...  

1. The effects on growth performance, energy and nitrogen retention, and leucine metabolism of a subcutaneous combined implant of 140 mg trenbolone acetate (TBA)+20 mg oestradiol-17β (OE) have been examined in Hereford × Friesian beef steers (280–520 kg). Comparisons were made both with the same animals before implantation and with untreated control animals maintained under similar physiological and nutritional conditions.2. Over a 10 week period the implanted steers showed an improvement in rate of live-weight gain (LWG) of 0.5–0.6 with an even greater proportional increase in N retention compared with control animals. Total energy retention was unaffected and thus the ratio, protein energy: total energy gain was 0.43 for implanted steers compared with 0.26 for untreated animals.3. Estimates of protein synthesis and protein oxidation were obtained from the specific radioactivities of blood free-leucine and exhaled carbon dioxide during continuous infusions of [1-14C]leucine. Whole-body protein synthesis, based on metabolic size, and amino acid fractional oxidation remained similar for control steers throughout the experiment. Steroid-treated steers showed a slight decline in synthesis which was significant (P < 0.05) at week + 5 post-implant while amino acid oxidation was significantly lower at weeks +2 (P < 0.01) and + 5 (P < 0.05) compared with control animals. The ratio, protein deposition: protein synthesis was 0.05 for control animals but 0.08–0.10 for steroid-treated animals after implantation.4. There was a slight decrease in urinary NT-methylhistidine elimination after implantation which suggested that muscle protein degradation may be reduced although the estimated decrease was insufficient to account for the total improvement in growth rate and N retention.5. The results suggest that for both control and treated steers, less than 0.5 of total urine N elimination was derived directly from tissue catabolism of protein and amino acids.6. The combined action of the exogenous steroids in the promotion of protein gain, primarily through a decrease in total protein degradation with little alteration of total energy retention, is compared with present understanding of the role of the endogenous sex hormones.


1990 ◽  
Vol 258 (2) ◽  
pp. E249-E255 ◽  
Author(s):  
J. T. Devlin ◽  
I. Brodsky ◽  
A. Scrimgeour ◽  
S. Fuller ◽  
D. M. Bier

We studied postexercise amino acid metabolism, in the whole body and across the forearm. Seven volunteers were infused with L-[alpha-15N]lysine and L-[1-13C]-leucine twice [one time during 3 h after cycle exercise (75% VO2max), and one time in the resting state]. Whole body protein breakdown was estimated from dilution of L-[alpha-15N]lysine and L-[1-13C]ketoisocaproic acid (KIC) enrichments in plasma. Leucine oxidation was calculated from 13CO2 enrichments in expired air. Whole body protein breakdown was not increased above resting levels during the recovery period. Leucine oxidation was decreased after exercise (postexercise 13 +/- 2.3 vs. resting 19 +/- 3.2 mumol.kg-1.h-1; P less than 0.02), while nonoxidative leucine disposal was increased (115 +/- 6.1 vs. 103 +/- 5.6 micrograms.kg-1.min-1; P less than 0.02). After exercise, forearm net lysine balance was unchanged (87 +/- 25 vs. 93 +/- 28 nmol.100 ml-1.min-1), but there were decreases in forearm muscle protein degradation (219 +/- 51 vs. 356 +/- 85 nmol.100 ml-1.min-1; P less than 0.05) and synthesis (132 +/- 41 vs. 255 +/- 69 nmol.100 ml-1.min-1; P less than 0.01). In conclusion, after exercise 1) whole body protein degradation is not increased, 2) leucine disposal is directed away from oxidative and toward nonoxidative pathways, 3) forearm protein synthesis is decreased. Postexercise increases in whole body protein synthesis occur in tissues other than nonexercised muscle.


1994 ◽  
Vol 72 (1) ◽  
pp. 69-81 ◽  
Author(s):  
K. Nielsen ◽  
J. Kondrup ◽  
P. Elsner ◽  
A. Juul ◽  
E. S. Jensen

The present study examined whether different proteins have different effects on whole-body protein turnover in adult rats. The rats were either starved, given a protein-free but energy-sufficient diet (1 MJ/kg body weight (BW) per d) or a diet containing intact casein, hydrolysed casein, or hydrolysed soya-bean protein at a level of 9.1 g/kg BW per d. The diets, which were isoenergetic with the same carbohydrate: fat ratio, were given as a continuous intragastric infusion for at least 4 d. During the last 19 h 15N-glycine (a primed continuous infusion) was given intragastrically and 15N was recovered from urinary ammonia and urea during isotope steady state for measurement of protein synthesis and protein degradation. Compared with starvation the protein-free diet decreased N excretion by 75%, probably by increasing the rate of reutilization of amino acids from endogenous proteins for protein synthesis. The protein diets produced a positive N balance which was independent of the protein source. Intact and hydrolysed casein increased protein synthesis 2.6- and 2.0-fold respectively, compared with the protein- free diet. Protein degradation increased 1.4- and 1.2-fold respectively. Hydrolysed soya-bean protein did not increase protein synthesis but decreased protein degradation by 35% compared with the protein-free diet. Compared with the hydrolysed soya-bean protein, intact casein resulted in 2.2- and 2.8-fold higher rates of protein synthesis and degradation respectively. These results are not easily explained by known sources of misinterpretation associated with the 15N-glycine method. Hydrolysed casein and hydrolysed soya-bean protein produced similar concentrations of insulin-like growth factor-1, insulin, glucagon, and corticosterone. The difference in amino acid composition between the dietary proteins was reflected in plasma amino acid composition and this is suggested to be responsible for the different effect on protein turnover. Preliminary results from this study have previously been published in abstract form (Nielsen et al. 1991).


Author(s):  
Jorn Trommelen ◽  
Andrew M. Holwerda ◽  
Philippe J. M. Pinckaers ◽  
Luc J. C. van Loon

All human tissues are in a constant state of remodelling, regulated by the balance between tissue protein synthesis and breakdown rates. It has been well-established that protein ingestion stimulates skeletal muscle and whole-body protein synthesis. Stable isotope-labelled amino acid methodologies are commonly applied to assess the various aspects of protein metabolism in vivo in human subjects. However, to achieve a more comprehensive assessment of post-prandial protein handling in vivo in human subjects, intravenous stable isotope-labelled amino acid infusions can be combined with the ingestion of intrinsically labelled protein and the collection of blood and muscle tissue samples. The combined application of ingesting intrinsically labelled protein with continuous intravenous stable isotope-labelled amino acid infusion allows the simultaneous assessment of protein digestion and amino acid absorption kinetics (e.g. release of dietary protein-derived amino acids into the circulation), whole-body protein metabolism (whole-body protein synthesis, breakdown and oxidation rates and net protein balance) and skeletal muscle metabolism (muscle protein fractional synthesis rates and dietary protein-derived amino acid incorporation into muscle protein). The purpose of this review is to provide an overview of the various aspects of post-prandial protein handling and metabolism with a focus on insights obtained from studies that have applied intrinsically labelled protein under a variety of conditions in different populations.


1997 ◽  
Vol 77 (6) ◽  
pp. 885-896 ◽  
Author(s):  
Isabelle Papet ◽  
Piotr Ostaszewski ◽  
Francoise Glomot ◽  
Christiane Obled ◽  
Magali Faure ◽  
...  

AbstractThe effect of a high dose of 3-hydroxy-3-methylbutyrate (HMB, a leucine catabolite) on protein metabolism was investigated in growing male lambs fed on hay and concentrate. Concentrate was supplemented with either Ca(HMB)2 (4g/kg) or Ca(C03)2 in experimental (HMB) and control groups respectively. Both groups consisted of six 2-month old lambs. Three complementary methods to study protein metabolism were carried out consecutively 2·5 months after beginning the dietary treatment: whole body phenylalanine fluxes, postprandial plasma free amino acid time course and fractional rates of protein synthesis in skeletal muscles. Feeding a high dose of HMB led to a significant increase in some plasma free amino acids compared with controls. Total, oxidative and non-oxidative phenylalanine fluxes were not modified by dietary HMB supplementation. Similarly, an acute infusion of HMB, in the control group, did not change these fluxes. In skeletal muscles, fractional rates of protein synthesis were not affected by long-term dietary supplementation with HMB. Taken together our results showed that administration of a high dose of HMB to lambs was able to modify plasma free amino acid pattern without any effect on whole-body protein turnover and skeletal muscle protein synthesis


1992 ◽  
Vol 263 (4) ◽  
pp. E794-E799 ◽  
Author(s):  
P. De Feo ◽  
F. F. Horber ◽  
M. W. Haymond

The present studies were performed to test the hypothesis that the liver, by increasing the synthesis of specific plasma proteins during the absorption of an amino acid meal, may play an important role in the temporary "storage" of ingested essential amino acids and to explore the effects of glucocorticosteroids and recombinant human growth hormone (rhGH) on these processes. The fractional synthetic rates of albumin and fibrinogen were determined using simultaneous infusions of intravenous [1-14C]leucine and intraduodenal [4,5-3H]leucine after 22 h fasting and during absorption of glucose and amino acids in four groups of normal subjects treated for 1 wk with placebo, prednisone (0.8 mg.kg-1.day-1), rhGH (0.1 mg.kg-1.day-1), or combined treatment. When compared with the fasted state and independent of the route of tracer delivery and hormonal treatment, albumin, but not fibrinogen, synthesis increased (P < 0.0001) during absorption of a mixed glucose amino acid meal in all groups. This increase in albumin synthesis accounted for 28% of the increase in whole body protein synthesis associated with feeding and for 24, 22, and 14% in the prednisone, rhGH, and combined treatment groups, respectively. These data suggest that the stimulation of albumin synthesis observed during feeding prevents irreversible oxidative losses of a significant fraction of ingested essential amino acids and may serve as a vehicle to capture excess dietary amino acids and transport them to peripheral tissues to sustain local protein synthesis.


1995 ◽  
Vol 60 (1) ◽  
pp. 99-107 ◽  
Author(s):  
I. Tauveron ◽  
E. Debras ◽  
S. Tesseraud ◽  
Y. Bonnet ◽  
Ph. Thiéblot ◽  
...  

AbstractThe present experiment was undertaken to investigate adaptations to insulin action on metabolism during lactation by using plasma concentrations of β hydroxybutyrate (β OH) free fatty acids (FFA) and lactate (L) as indicators. The study included three groups each of four goats. One group was used at 12 to 31 days post partum (early lactation), one group at 98 to 143 days post partum (mid lactation) and one group at 1 year post partum (dry period). For a given physiological state, each goat was examined four times to study the effect of insulin infused for 2·5 h at two rates, medium (0·36 nmol/min) followed by high (1·79 nmol/min) in two protocols: under normal aminoacidaemia in study 1 followed by hyperaminoacidaemia in study 2. Appropriate amino acid infusions were used to blunt insulin-induced hypoaminoacidaemia under eukaliaemic and euglycaemic clamp conditions or to create hyperaminoacidaemia and maintain this state under insulin treatment. In the basal state βOH (P < 0·05), mid lactation) and FFA (P < 0·05 early lactation) were higher during lactation than in the dry period. Plasma L was unmodified. Insulin infusion always resulted in a decrease in βOH levels (P < 0·05). In both studies, the change in βOH concentration as a function of changes in plasma insulin (an index of insulin sensitivity) was greater during early lactation than in the dry period (P < 0·05); this was also the case of mid lactation in study 1. Insulin infusion decreased plasma FFA during early lactation and in the dry period in study 1 (P < 0·05), and there was a trend for insulin sensitivity to be greater during early lactation. In both studies insulin infusion did not affect plasma L in lactating goats whereas plasma L was increased in dry animals (P < 0·05). The results demonstrate that during early lactation, compared with the dry period, there is an increased ability of insulin to lower βOH and FFA concentrations. These effects were not altered by increasing plasma amino acid concentrations during insulin infusion.


1989 ◽  
Vol 257 (5) ◽  
pp. E639-E646 ◽  
Author(s):  
C. Obled ◽  
F. Barre ◽  
D. J. Millward ◽  
M. Arnal

These studies were undertaken to determine to what extent constant infusion measurements and plasma sampling could provide sensible answers for rates of whole body protein turnover and also which amino acid would be the most representative probe of whole body protein turnover. Whole body protein synthesis rates were estimated in 70-g rats with L-[U-14C]threonine, L-[U-14C]lysine, L-[U-14C]tyrosine, L-[U-14C]phenylalanine, and L-[1-14C]leucine by either simultaneous tracer infusion of four amino acids or by injections of large quantities of 14C-labeled amino acids. In the infusion experiment, indirect estimates of whole body protein turnover based on free amino acid specific radioactivity and stochastic modeling were compared with direct measurement of the incorporation of the tracer into proteins. These two methods of analysis provided similar results for each amino acid, although in each case fractional synthesis rates were lower (by between 26 and 63%) when calculations were based on plasma rather than tissue specific radioactivity. With the flooding-dose method, whole body fractional protein synthesis rates were 41.4, 25.6, 31.1, and 31.4% with threonine, lysine, phenylalanine, and leucine, respectively. These values were similar to those obtained by the continuous infusion method using tissue specific radioactivity for threonine and lysine. For leucine, however, the flooding-dose method provided an intermediate value between the two estimates derived either from the plasma or the tissue specific radioactivity in the infusion method.(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Vol 149 (9) ◽  
pp. 1533-1542 ◽  
Author(s):  
Imre W K Kouw ◽  
Jan Willem van Dijk ◽  
Astrid M H Horstman ◽  
Irene Fleur Kramer ◽  
Joy P B Goessens ◽  
...  

ABSTRACT Background Excess lipid availability has been associated with the development of anabolic resistance. As such, obesity may be accompanied by impairments in muscle protein metabolism. Objective We hypothesized that basal and postprandial muscle protein synthesis rates are lower in obese than in lean men. Methods Twelve obese men [mean ± SEM age: 48 ± 2 y; BMI (in kg/m2): 37.0 ± 1.5; body fat: 32 ± 2%] and 12 age-matched lean controls (age: 43 ± 3 y; BMI: 23.4 ± 0.4; body fat: 21 ± 1%) received primed continuous L-[ring-2H5]-phenylalanine and L-[ring-3,5-2H2]-tyrosine infusions and ingested 25 g intrinsically L-[1-13C]-phenylalanine labeled whey protein. Repeated blood and muscle samples were obtained to assess protein digestion and amino acid absorption kinetics, and basal and postprandial myofibrillar protein synthesis rates. Results Exogenous phenylalanine appearance rates increased after protein ingestion in both groups (P < 0.001), with a total of 53 ± 1% and 53 ± 2% of dietary protein–derived phenylalanine appearing in the circulation over the 5-h postprandial period in lean and obese men, respectively (P = 0.82). After protein ingestion, whole-body protein synthesis and oxidation rates increased to a greater extent in lean men than in the obese (P-interaction < 0.05), resulting in a higher whole-body protein net balance in the lean than in the obese (7.1 ± 0.2 and 4.6 ± 0.4 µmol phenylalanine · h−1 · kg−1, respectively; P-interaction < 0.001). Myofibrillar protein synthesis rates increased from 0.030 ± 0.002 and 0.028 ± 0.003%/h in the postabsorptive period to 0.034 ± 0.002 and 0.035 ± 0.003%.h−1 in the 5-h postprandial period (P = 0.03) in lean and obese men, respectively, with no differences between groups (P-interaction = 0.58). Conclusions Basal, postabsorptive myofibrillar protein synthesis rates do not differ between lean and obese middle-aged men. Postprandial protein handling, including protein digestion and amino acid absorption, and the postprandial muscle protein synthetic response after the ingestion of 25 g whey protein are not impaired in obese men. This trial was registered at www.trialregister.nl as NTR4060.


2003 ◽  
Vol 284 (5) ◽  
pp. E1037-E1042 ◽  
Author(s):  
Paolo Tessari ◽  
Edward Kiwanuka ◽  
Michela Zanetti ◽  
Rocco Barazzoni

Whether phenylalanine-tyrosine (Phe-Tyr) tracers yield estimates of postprandial protein synthesis comparable to those of the widely used leucine (Leu) tracer is unclear. We measured Leu oxidation (Ox), Phe hydroxylation (Hy), and their disposal into whole body protein synthesis before and after the administration of a mixed meal (62 kJ/kg body wt, 22% of energy as protein), over 4 h in healthy subjects. Both plasma and intracellular precursor pools were used. The amino acid data were extrapolated to body protein by assuming a fixed ratio of Leu to Phe in the proteins. In the postabsorptive state, whole body protein synthesis (expressed as mg · kg−1 · min−1) was similar between Leu and Phe-Tyr tracers irrespective of the precursor pool used. After the meal, Leu Ox, Phe Hy, and body protein synthesis increased ( P ≤ 0.01 vs. basal). With the use of intracellular precursor pools, the increase of protein synthesis with Phe-Tyr (+0.51 ±0.21 mg · kg−1 · min−1) and Leu tracers (+0.57 ± 0.14) were similar ( P = not significant). In contrast, with plasma pools the increase of protein synthesis was more than twofold greater with Phe-Tyr (+1.17 ± 0.19 mg · kg−1 · min−1) than that with Leu (0.50 ± 0.13 mg · kg−1 · min−1, P < 0.01). Direct correlations were found between Leu and Ox [using both plasma and intracellular pools ( r ≤ 0.65, P ≤ 0.01)] but not between Phe and either plasma or intracellular Hy. In conclusion, 1) Phe-Tyr and Leu tracers yield comparable estimates of body protein synthesis postprandially, provided that intracellular precursor pools are used; 2) both Leu Ox and Phe Hy are stimulated by a mixed meal; 3) Phe does not correlate with Hy, which might be better related to the (unknown) portal Phe.


Sign in / Sign up

Export Citation Format

Share Document