Examining the Metabolisable Protein system at ideal protein:energy ratios in dairy cows

1997 ◽  
Vol 1997 ◽  
pp. 83-83
Author(s):  
J A Metcalf ◽  
R J Mansbridge ◽  
J S Blake ◽  
J R Newbold ◽  
J D Oldham

Previous work at ADAS Bridgets aimed at evaluating the Metabolisable Protein (MP) system (AFRC 1992) has indicated that the efficiency of MP use for milk production may be too high, or that the amount of MP required for maintenance may be too low (Newbold et al 1994). This experiment was designed to indicate the true efficiency of MP use for milk protein production when metabolisable energy (ME) and MP supplies were balanced.

1998 ◽  
Vol 1998 ◽  
pp. 24-24 ◽  
Author(s):  
J.M. Moorby ◽  
P.R. Evans ◽  
N.E. Young

The efficiency of use of feed protein for milk protein production is very poor, particularly for animals offered conserved forages. Contributing to this is the inefficient capture of rumen degradable N in situations where a readily fermentable energy supply is not available for use by the rumen microbial population. The incorporation of a whole crop cereal into a conserved forage could increase rumen protein efficiency. This experiment was carried out to investigate the milk production of dairy cows offered a conserved forage of a whole crop barley and kale bicrop compared with grass silage, and a mixture of the two.


1998 ◽  
Vol 1998 ◽  
pp. 24-24
Author(s):  
J.M. Moorby ◽  
P.R. Evans ◽  
N.E. Young

The efficiency of use of feed protein for milk protein production is very poor, particularly for animals offered conserved forages. Contributing to this is the inefficient capture of rumen degradable N in situations where a readily fermentable energy supply is not available for use by the rumen microbial population. The incorporation of a whole crop cereal into a conserved forage could increase rumen protein efficiency. This experiment was carried out to investigate the milk production of dairy cows offered a conserved forage of a whole crop barley and kale bicrop compared with grass silage, and a mixture of the two.


1994 ◽  
Vol 42 (2) ◽  
pp. 89-104
Author(s):  
W.M. Van Straalen ◽  
C. Salaun ◽  
W.A.G. Veen ◽  
Y.S. Rijpkema ◽  
G. Hof ◽  
...  

Protein evaluation systems (crude protein (CP), digestible crude protein (DCP), protein digested in the intestine (PDI), amino acids truly absorbed in the small intestine (AAT), absorbed protein (AP), metabolizable protein (MP), crude protein flow at the duodenum (AAS) and digestible protein in intestine (DVE)) were validated using data from 15 production experiments with dairy cows, carried out in the Netherlands. Only treatments that were deficient in protein according to at least one system were selected. Average yield was 31.2 kg of fat and protein corrected milk daily and 989 g of milk protein daily. The observed milk protein production was compared with milk protein production predicted from the protein supply and requirements in each system. The difference between observed and predicted milk protein production expressed as the absolute and relative prediction error was smallest for the DVE-system (-2 g/day; 5.7%) and increased in the order CP (-22 g/day; 6.7%), PDI (-19 g/day; 7.8%), DCP (-44 g/day; 8.8%), AP(-37 g/day; 9.3%), AAS (100 g/day; 11.7%), AAT (112 g/day; 13.4%) and MP system (204 g/day; 22.9%). Predictions can be improved when a variable efficiency of milk protein production is used. In the DVE-system the observed efficiency decreased with increasing protein to energy ratio in the diet and milk production level. It was concluded that under Dutch conditions the prediction of milk protein production decreased in the order DVE, CP, PDI, DCP, AP, AAS, AAT and MP system.


2017 ◽  
Vol 84 (3) ◽  
pp. 240-247 ◽  
Author(s):  
Ruairi P McDonnell ◽  
Martin vH Staines

This research paper describes the effect of partially replacing wheat with maize grain and canola meal on milk production and body condition changes in early lactation Holstein-Friesian dairy cows consuming a grass silage-based diet over an 83-d period. Two groups of 39 cows were stratified for age, parity, historical milk yield and days in milk (DIM), and offered one of two treatment diets. The first treatment (CON) reflected a typical diet used by Western Australian dairy producers in summer and comprised (kg DM/cow per d); 8 kg of annual ryegrass silage, 6 kg of crushed wheat (provided once daily in a mixed ration), 3·6 kg of crushed lupins (provided in the milking parlour in two daily portions) and ad libitum lucerne haylage. The second treatment diet (COMP) was identical except the 6 kg of crushed wheat was replaced by 6 kg of a more complex concentrate mix (27% crushed wheat, 34% maize grain and 37% canola meal). Lucerne haylage was provided independently in the paddock to all cows, and no pasture was available throughout the experiment. The COMP group had a greater mean overall daily intake (22·5vs20·4 kg DM/cow) and a higher energy corrected milk (ECM) yield (29·2vs27·1 kg/cow;P= 0·047) than the CON cows. The difference in overall intake was caused by a higher daily intake of lucerne haylage in COMP cows (4·5vs2·3 kg DM/cow). The CON group had a higher concentration of milk fat (42·1vs39·3 g/kg;P= 0·029) than COMP cows. Milk protein yield was greater in COMP cows (P< 0·021); however, milk fat yield was unaffected by treatment. It is concluded that partially replacing wheat with canola meal and maize grain in a grass silage-based diet increases voluntary DMI of conserved forage and consequently yields of ECM and milk protein.


1996 ◽  
Vol 36 (7) ◽  
pp. 763 ◽  
Author(s):  
M Reeves ◽  
WJ Fulkerson ◽  
RC Kellaway

Three studies were conducted to examine the production response of Friesian cows grazing well-managed lukuyu (Pennisetum clandestinum) pasture to supplementation with a cereal grain concentrate, with and without the inclusion of formaldehyde-treated protein meal. Mean (¦ s.e.) levels of nutrients in the pasture (g/kg DM) on offer were: 205 ¦ 3 crude protein; 683 ¦ 7 in vitro organic matter digestibility; 239 ¦ 2 acid detergent fibre; 615 ¦ 8 neutral detergent fibre and 4.47 ¦ 0.16, 2.51 ¦ 0.06, 31.96 ¦ 0.98, 0.39 ¦ 0.03 and 3.18 ¦ 0.09 of calcium, phosphorus, potassium, sodium and magnesium, respectively. Study 1 was a 3-farmlet study conducted over 45 days (March-April 1993) involving cows 5-6 months into lactation, which compared 3 levels of concentrate feeding at 0 (R0), 3 (R3) or 6 (R6) kg crushed barley/cow.day. Study 2 was an 18-day extension of study 1 with animals in the seventh month of lactation. The concentrate fed was 72% barley and 24% formaldehyde-treated sunflower meal. Pasture intake of individual cows was determined using an alkane technique. Mean milk yields (L/cow. day) in study 1 were 14.2, 18.3 and 18.0, and in study 2 were 12.5, 18.5 and 17.4 for treatments R0, R3 and R6, respectively. Milk fat (3.77 v. 3.26%), but not milk protein, content of the Ro cows was significantly higher than R6 cows in study 1 only. In study 2, the apparent whole-diet digestibility remained constant as concentrate level rose, indicating a negative effect of concentrate fed on forage digestibility in the absence of buffers. Study 3 was a 3 x 4 factorial design plus a 'control' group (0.5 kg barley/cow.day used as a carrier for minerals) to examine the milk production response to 3 levels of concentrate feeding (3, 6 and 9 kg/cow.day) with 4 levels of formaldehyde-treated canola meal (FTCM; 0, 20, 40 and 60% of concentrate). Rations were iso-energetic within levels of concentrates fed. The control group had significantly lower milk production (17.2 L/cow.day), as well as milk protein (2.90%), plasma urea (PU) (5.90 mmol/L) and P-hydroxybutyrate (G-OHB) (0.525 mmo1L) than other treatment groups. The mean milk production response of 0.6 L milk/kg concentrate fed in study 3 at the 3 kg/day level of feeding was lower than observed in studies 1 and 2 (1.4 and 2.0 L/kg concentrate, respectively). The level of metabolisable energy in the concentrate in study 3 had a significant influence on milk production, milk fat and milk protein levels. Plasma glucose and G-OHB levels significantly increased with the incorporation of FTCM into the concentrate. Nonesterified fatty acid levels dropped significantly below levels of other treatments at the lowest level of inclusion of FTCM. PU levels generally increased in response to increasing metabolisable energy and inclusion of FTCM in the concentrate, with an interaction between them. Milk urea (MU) levels (mmol/L) showed a significant linear (P<0.001; r2 = 0.44) relationship to PU levels (mmol/L) as follows: MU = 0.167 + 0.272PU.


Author(s):  
D. Tristant ◽  
C. A. Moran

SummaryThe following trial was conducted to evaluate the impact of feeding Yea-Sacc® (YS; Alltech Inc, USA), a zootechnical feed additive based on a live probiotic strain of Saccharomyces cerevisiae, to lactating dairy cows over a 12 week period. Sixty-four primiparous and multiparous Holstein dairy cows, grouped to give similar range of parity, physiological and milk production stages, were selected for the study. Cows were equally allocated to either a control feed group or a diet supplemented with YS (32 cows per treatment). The test diet was formulated to include YS (Yea-Sacc® Farm Pak) incorporated in the total mixed ration (TMR), supplying a target dose of 5 × 107 CFU/kg feed dry matter (DM). This target dose delivered 1 × 109 CFU/cow/day, for a cow consuming 20 kg feed (DM basis) daily. Each cow was considered a replicate unit. Cows were fed a nutritionally adequate total TMR plus hay and a supplementary protein/energy concentrate (calculated according to milk yield) for 12 weeks, supplied once a day after the morning milking. Weigh backs of feed were recorded daily, with refusals being maintained at 3% of the total intake. During the 12 week study period, YS had significant beneficial effects on milk production (+0.8 kg/day; P = 0.003), energy corrected milk production (+1.4 kg/day; P < 0.0001), synthesis of milk protein (+36 g/day; P = 0.001), milk protein content (+0.3 g/kg; P = 0.009), and milk urea content (−0.09 mg/l; P = 0.004). The synthesis of milk fat was similar between treatments but milk fat content was lower for the YS group compared to the control group (−1.1 g/kg; P = 0.0002). Lactose content was always higher (+0.8 g/kg; P < 0.0001) for the YS group, indicating enhanced energy utilisation. In general, the effect of YS was higher during the first study period (one to seven weeks), when cows were in early lactation and the production potential was higher. YS cows produced significantly more milk during the study, and an additional 220 kg milk per cow was sold from this group from the output measured from the beginning of the study to two weeks post-trial. However, the statistical analysis including the post-study period did not show a significant effect. The 305-day simulated milk production was higher for the YS group (+400 kg/cow) but again the difference was not significant. In conclusion, YS at a target dose of 5 × 107 CFU/kg DM improved milk production and milk quality in healthy dairy cows. In addition, when the data were included in a whole-farm model, feeding YS reduced methane emissions by 4%, reduced the number of animals required for the desired milk production by 4% and increased overall farm margins by 1.4%.


Author(s):  
F.P. O'Mara ◽  
J.J. Murphy ◽  
M. Rath

Milk protein synthesis may be limited by amino acid (AA) flow to the duodenum. This can be increased by increasing the flow of microbial AA's or undegraded feed AA's. This experiment was carried out to determine the effect on milk production and nutrient flows at the duodenum of including fishmeal (120g/kg) in the supplement to grass silage at two levels of supplement feeding.The treatments, arranged in a 2x2 factorial, were 1.) 3.5 kg/day of 0% fishmeal supplement (L-UDP), 2.) 7 kg/day of L-UDP, 3.) 3.5 kg/day of 12% fishmeal supplement (H-UDP), and 4.) 7 kg/day of H-UDP. Supplements were fed to 3 6 Friesian cows in a 4x4 multiple Latin-square trial with three week periods to determine production responses, and to four ruminally and duodenally cannulated cows to determine rumen fermentation and nutrient flows. Flows were determined by the dual marker technique of Faichney (1975) using cobalt-EDTA and ytterbium acetate as liquid and solid phase markers respectively. Purines were used as the bacterial marker (Zinn and Owens, 1986). Degradability of the feeds was measured in 3 other cows using the small bag technique described by De Boer et al. (1987).


2001 ◽  
Vol 2001 ◽  
pp. 192-192
Author(s):  
R.E. Lawson ◽  
A.R. Moss ◽  
C. Rymer ◽  
J.S. Blake

Mansbridge (1995) reported that replacing ground wheat with a mix of ground wheat and maize grain increased milk protein concentration, which led the authors to speculate that increased inclusion of maize grain increased rumen by-pass starch. Indeed, de Visseret al(1990) reported that feeding less rapidly degradable starches has led to increased milk protein concentration.The objective of this study was to examine the effects of starch concentration and source on feed intake, milk yield and milk composition of dairy cows.


1986 ◽  
Vol 66 (1) ◽  
pp. 85-95 ◽  
Author(s):  
J. D. ERFLE ◽  
F. D. SAUER ◽  
S. MAHADEVAN ◽  
R. M. TEATHER

In two experiments, lactating cows (26 in exp. 1; 32 in exp. 2) were fed an 11.3% crude protein (CP) diet, a 14.7% CP diet containing untreated soybean meal (SBM) or a 14.6% CP diet containing formaldehyde-treated SBM (FSBM), all three fed as a complete blended diet with control corn silage (CCS) (exp. 1); a 12% CP diet, a 13.4% CP diet containing SBM or a 13.3% CP diet containing FSBM, all fed as a complete blended diet with urea-treated corn silage (UCS) (exp. 2). In both experiments concentrates and CCS or UCS were mixed (50:50 dry matter) daily and fed ad lib for a 16-wk period. The increase of CP over the low CP negative control by addition of untreated SBM resulted in a significant (P < 0.05) increase in milk production in both experiments. The addition of FSBM had no significant effect. When comparing solids-corrected milk (SCM), addition of SBM, whether treated or not, significantly increased SCM in both experiments. In neither experiment did FSBM improve milk production over untreated SBM. All animals fed CCS lost body weight but there was no difference between treatments. For animals fed UCS the low CP group lost significantly (P < 0.05) more body weight than did the group fed FSBM. Dry matter (DM) intake was significantly (P < 0.05) lower for the FSBM fed group than for the group fed untreated SBM in exp. 1 (CCS). DM intake was significantly (P < 0.05) increased by either FSBM or SBM over the low CP control fed UCS. Milk protein was the only component significantly (P < 0.05) decreased by FSBM in exp. 1. Isobutyric and isovaleric acids were significantly (P < 0.05) lower in rumen fluid of animals on FSBM plus CCS. Rumen microbial protein content seemed to be more adversely affected by FSBM with CCS than UCS. Amino acid content of FSBM and SBM demonstrated that lysine and tyrosine were lost from SBM after treatment with formaldehyde. The lack of a response in milk production to FSBM is discussed in terms of a lysine and tyrosine deficiency for milk protein synthesis and the adverse effect that formaldehyde protection of SBM may have on the rumen microbial population. Key words: Lactation, dairy cows, urea, corn silage, soybean meal, formaldehyde treatment


2020 ◽  
Vol 50 (2) ◽  
Author(s):  
Aline Cristina Dall-Orsoletta ◽  
João Gabriel Rossini Almeida ◽  
Márcia Maria Oziemblowski ◽  
Henrique Mendonça Nunes Ribeiro-Filho

ABSTRACT: The excretion of urinary nitrogen (N), one of the most important environmental contaminants from livestock systems, is highly correlated with milk urea N content. The objective of this research was to evaluate the use of different types of corn supplementation on milk urea N in grazing dairy cows. Twelve Holstein × Jersey lactating dairy cows were divided into six uniform groups according to milk production, lactation stage and live weight. Treatments were compared according to a 3 × 3 replicated Latin square experimental design, with three periods of seventeen days (twelve days to adaptation and five to measurements). The experimental treatments were exclusively grazing (G); grazing + supplementation with 4.2 kg DM of corn silage (CS) and grazing + supplementation with 3.2 kg DM of ground corn (GC). The pasture used was annual ryegrass (Lolium multiflorum L.) and white oats (Avena sativa L.). The milk protein production increased 65 g/day in the GC treatment group compared to the G and CS groups. The supplemented dairy cows showed lower milk urea N (-2.8 mg/dL) than unsupplemented cows, but the N utilization efficiency (g N output in milk/ g N intake) did not change between treatments (average = 0.26). Additionally, there was a relationship between milk and plasma urea nitrogen concentrations (R2 = 0.64). In conclusion, for dairy cows grazing annual temperate pastures, corn ground supplementation increased milk protein production and reduced the excretion of milk urea N, whereas corn silage reduced the excretion of milk urea N without affecting milk protein production.


Sign in / Sign up

Export Citation Format

Share Document