A Fully Integrated 5.2-GHz CMOS Variable Gain LNA for 802.11a WLAN

2012 ◽  
Vol 433-440 ◽  
pp. 5579-5583
Author(s):  
Ji Hai Duan ◽  
Chun Lei Kang

A fully integrated 5.2GHz variable gain low noise amplifier (VGLNA) in a 0.18μm CMOS process is proposed in this paper. The VGLAN can achieve a maximum small signal gain of 17.85 dB within the noise figure (NF) of 2.04 dB and a minimum gain of 2.04 dB with good input return loss. The LNA’s P1dB in the high gain mode is -17.5 dBm. The LAN consumes only 14.58 mW from a 1.8V power supply.

Author(s):  
Mutanizam Abdul Mubin ◽  
◽  
Arjuna Marzuki

In this work, a low-power 0.18-μm CMOS low-noise amplifier (LNA) for MedRadio applications has been designed and verified. Cadence IC5 software with Silterra’s C18G CMOS Process Design Kit were used for all design and simulation work. This LNA utilizes complementary common-source current-reuse topology and subthreshold biasing to achieve low-power operation with simultaneous high gain and low noise figure. An active shunt feedback circuit is used as input matching network to provide a suitable input return loss. For test and measurement purpose, an output buffer was designed and integrated with this LNA. Inductorless design approach of this LNA, together with the use of MOSCAPs as capacitors, help to minimize the die size. On post-layout simulations with LNA die area of 0.06 mm2 and simulated total DC power consumption of 0.5 mW, all targeted specifications are met. The simulated gain, input return loss and noise figure of this LNA are 16.3 dB, 10.1 dB and 4.9 dB respectively throughout the MedRadio frequency range. For linearity, the simulated input-referred P1dB of this LNA is -26.7 dBm while its simulated IIP3 is -18.6 dBm. Overall, the post-layout simulated performance of this proposed LNA is fairly comparable to some current state-of-the-art LNAs for MedRadio applications. The small die area of this proposed LNA is a significant improvement in comparison to those of the previously reported MedRadio LNAs.


Author(s):  
Asieh Parhizkar Tarighat ◽  
Mostafa Yargholi

A two-path low-noise amplifier (LNA) is designed with TSMC 0.18[Formula: see text][Formula: see text]m standard RF CMOS process for 6–16[Formula: see text]GHz frequency band applications. The principle of a conventional resistive shunt feedback LNA is analyzed to demonstrate the trade-off between the noise figure (NF) and the input matching. To alleviate the mentioned issue for wideband application, this structure with noise canceling technique and linearity improvement are applied to a two-path structure. Flat and high gain is supplied by the primary path; while the input and output impedance matching are provided by the secondary path. The [Formula: see text][Formula: see text]dB bandwidth can be increased to a higher frequency by inductive peaking, which is used at the first stage of the two paths. Besides, by biasing the transistors at the threshold voltage, low power dissipation is achieved. The [Formula: see text][Formula: see text]dB gain bandwidth of the proposed LNA is 10[Formula: see text]GHz, while the maximum power gain of 13.1[Formula: see text]dB is attained. With this structure, minimum NF of 4.6[Formula: see text]dB and noise flatness of 1[Formula: see text]dB in the whole bandwidth can be achieved. The input impedance is matched, and S[Formula: see text] is lower than [Formula: see text]10 dB. With the proposed linearized LNA, the average IIP[Formula: see text][Formula: see text]dBm is gained, while it occupies 1051.7[Formula: see text][Formula: see text]m die area.


2013 ◽  
Vol 284-287 ◽  
pp. 2647-2651
Author(s):  
Zhe Yang Huang ◽  
Che Cheng Huang ◽  
Jung Mao Lin ◽  
Chung Chih Hung

This paper presents a wideband wireless receiver front-end for 3.1-5.0GHz band group-1 (BG-1) WiMedia application. The front-end circuits are designed in 0.18um standard CMOS process. The experimental results show the maximum conversion power gain is 45.5dB; minimum noise figure is 2.9dB. Input return loss is lower than -9.3dB and output return loss is lower than -6.8dB. The maximum LO conversion power is 0dBm. 3dB working frequency is 1.9GHz (3.1GHz-5.0GHz) Total power consumption is 24.3mW including LNA, mixer and all buffers. Total chip area is 1.27mm2 including dummy and pads.


Author(s):  
Kamil Pongot ◽  
Abdul Rani Othman ◽  
Zahriladha Zakaria ◽  
Mohamad Kadim Suaidi ◽  
Abdul Hamid Hamidon ◽  
...  

This research present a design of a higher  gain (66.38dB) for PHEMT LNA  using an inductive drain feedback technique for wireless application at 5.8GHz. The amplifier it is implemented using PHEMT FHX76LP transistor devices.  The designed circuit is simulated with  Ansoft Designer SV.  The LNA was designed using  T-network as a matching technique was used at the input and output terminal,  inductive generation to the source and an inductive drain feedback. The  low noise amplifier (LNA) using lumped-component provides a noise figure 0.64 dB and a gain (S<sub>21</sub>) of 68.94 dB. The output reflection (S<sub>22</sub>), input reflection (S<sub>11</sub>) and return loss (S<sub>12</sub>) are -17.37 dB, -15.77 dB and -88.39 dB respectively. The measurement shows the  stability was at  4.54 and 3-dB bandwidth of 1.72 GHz. While, the  low noise amplifier (LNA) using  Murata manufactured component provides a noise figure 0.60 dB and a gain (S<sub>21</sub>) of 66.38 dB. The output reflection (S<sub>22</sub>), input reflection (S<sub>11</sub>) and return loss (S<sub>12</sub>) are -13.88 dB, -12.41 dB and -89.90 dB respectively. The measurement shows the  stability was at  6.81 and 3-dB bandwidth of 1.70 GHz. The input sensitivity more than -80 dBm  exceeded the standards required by IEEE 802.16.


2014 ◽  
Vol 23 (05) ◽  
pp. 1450058
Author(s):  
S. MANJULA ◽  
D. SELVATHI

Low noise amplifier (LNA) is an important component in RF receiver front end. An inductively degenerated cascode low noise amplifier (IDCLNA) is mostly preferred for producing good trade-offs such as high gain, low noise figure (NF), high reverse isolation and low power consumption for narrowband applications. This IDCLNA structure is also used to reduce the gate induced noise on the noise performance by inserting the capacitance in parallel with the gate-to-source capacitance of main transistor. Usually, the parasitic overlap capacitances can impose serious constraints on achievable performance and is taken into account in IDCLNA. In this paper, IDCLNA is designed at a frequency of 2.4 GHz with analyzing the impact of parasitic overlap capacitances on IDCLNA in terms of unity current gain frequency (f T ) which will affect the NF of IDCLNA and simulated using 130 nm, 90 nm and 65 nm CMOS technologies. The NF of IDCLNA with and without parasitic overlap capacitances are analyzed and compared for different short channel CMOS processes. Simulation results show that the parasitic overlap capacitances have advantageous to reduce the gate induced noise in IDCLNA for 130-nm CMOS process for 2.4 GHz applications.


2013 ◽  
Vol 22 (02) ◽  
pp. 1250088 ◽  
Author(s):  
MERIAM BEN AMOR ◽  
MOURAD LOULOU ◽  
SEBASTIEN QUINTANEL ◽  
DANIEL PASQUET

In this paper we present the design of a fully integrated low noise amplifier for WiMAX standard with AMS 0.35 μm CMOS process. This LNA is designed to cover the frequency range for licensed and unlicensed bands of the WiMAX 2.3–5.9 GHz. The proposed amplifier achieves a wide band input and output matching with S11 and S22 lower than -10 dB, a flat gain of 12 dB and a noise figure around 3.5 dB for the entire band and from the upper to the higher frequencies. The presented wide band LNA employs a Chebyshev filter for input matching and an inductive shunt feedback for output matching with a bias current of 15 mA and a supply voltage of 2.5 V.


2011 ◽  
Vol 403-408 ◽  
pp. 2809-2813
Author(s):  
Kuan Bao ◽  
Xiang Ning Fan

This paper presents a wideband low noise amplifier (LNA) for multi-standard radio applications. The low noise characteristic and input matching are simultaneously achieved by active-feedback technique. Bond-wire inductors and electrostatic devices (ESDs) are co-designed to improve the chip performance. Implemented in 0.18-μm CMOS process, the core size of the fully integrated LNA circuits is 535 μm×425 μm without any passive on-chip inductor. The simulated gain and the minimal noise figure of the CMOS LNA are 17.5 dB and 2.0 dB, respectively. The LNA achieves a -3dB bandwidth of 3.1 GHz. And the simulated IIP3 is -4.4 dBm at 2.5 GHz. Operating at 1.8V, the LNA draws a current of 7.7 mA.


2013 ◽  
Vol 22 (03) ◽  
pp. 1350011 ◽  
Author(s):  
ABBAS BAYRAMNEJAD ◽  
DAVUD ASEMANI ◽  
SAADAN ZOKAEI

In this paper, a multiband low-noise amplifier (LNA) with capability of band tuning is proposed to support the Mobile WiMAX (IEEE 802.16e) standard associated with a large IIP3 at RF frequencies using multi-gated linearization techniques. Proposed LNA architecture has been optimized in terms of linearity based on a comparative analysis between four tunable LNA structures. In addition, a general survey is performed on linearization techniques (multiple-gated transistors, Derivative Superposition (DS), Modified DS). Proposed LNA is constituted of multi-gated linearization technique. Design and simulations have been realized in 0.13 μm RF CMOS process considering a power supply of 1.2 V. Proposed LNA exhibits an IIP3 of +8.8 dBm, +14.3 dBm, and +6.4 dBm at the lower, middle, and upper bands of WIMAX, respectively. It results in a power gain of 10 dB, a noise figure below 2.5 dB and S11 of -11.5 dB, -8.6 dB, and -12.7 dB at the lower, middle, and upper bands. The related power dissipations are 10 mW, 9.9 mW, and 9.4 mW at the lower, middle, and upper bands, respectively.


2021 ◽  
Vol 21 (2) ◽  
pp. 91
Author(s):  
M. Reza Hidayat ◽  
Ilham Pazaesa ◽  
Salita Ulitia Prini

Automatic dependent surveillance-broadcast (ADS-B) is an equipment of a radar system to reach difficult areas. For radar applications, an ADS-B requires a low noise amplifier (LNA) with high gain, stability, and a low noise figure. In this research, to produce an LNA with good performance, an LNA was designed using a BJT transistor 2SC5006 with DC bias, VCE = 3 V, and current Ic = 10 mA, also a DC supply with VCC = 12 V, to achieve a high gain with a low noise figure. The initial LNA impedance circuit was simulated using 2 elements and then converted into 3 elements to obtain parameters according to the target specification through the tuning process, impedance matching circuit was used to reduce return loss and voltage standing wave ratio (VSWR) values. The LNA sequence obtains the working frequency of 1090 MHz, return loss of -52.103 dB, a gain of 10.382, VSWR of 1.005, a noise figure of 0.552, stability factor of 0.997, and bandwidth of 83 MHz. From the simulation results, the LNA has been successfully designed according to the ADS-B receiver specifications.


2015 ◽  
Vol 7 (3-4) ◽  
pp. 339-347 ◽  
Author(s):  
Stefan Malz ◽  
Bernd Heinemann ◽  
Rudolf Lachner ◽  
Ullrich R. Pfeiffer

This paper presents two J-band amplifiers in different 0.13 μm SiGe technologies: a small signal amplifier (SSA) in a technology in which never before gain has been shown over 200 GHz; and a low noise amplifier (LNA) design for 230 GHz applications in an advanced SiGe HBT technology with higher fT/fmax, demonstrating the combination of high gain, low noise, and low power in a single amplifier. Both circuits consist of a four-stage pseudo-differential cascode topology. By employing series–series feedback at the single-stage level the small-signal gain is increased, enabling circuit operation at high-frequencies and with improved efficiency, while maintaining unconditional stability. The SSA was fabricated in a SiGe BiCMOS technology by Infineon with fT/fmax values of 250/360 GHz. It has measured 19.5 dB gain at 212 GHz with a 3 dB bandwidth of 21 GHz. It draws 65 mA from a 3.3 V supply. On the other hand, a LNA was designed in a SiGe BiCMOS technology by IHP with fT/fmaxof 300/450 GHz. The LNA has measured 22.5 dB gain at 233 GHz with a 3 dB bandwidth of 10 GHz and a simulated noise figure of 12.5 dB. The LNA draws only 17 mA from a 4 V supply. The design methodology, which led to these record results, is described in detail with the LNA as an example.


Sign in / Sign up

Export Citation Format

Share Document