Spatial variation in Nitrogen requirements of cereals, and their interpretation

2017 ◽  
Vol 8 (2) ◽  
pp. 303-307 ◽  
Author(s):  
D. R. Kindred ◽  
R. Sylvester-Bradley ◽  
A. E. Milne ◽  
B. Marchant ◽  
D. Hatley ◽  
...  

A range of precision farming technologies are used commercially for variable rate applications of nitrogen (N) for cereals, yet these usually adjust N rates from a pre-set value, rather than predicting economically optimal N requirements on an absolute basis. This paper reports chessboard experiments set up to examine variation in N requirements, and to develop and test systems for its prediction, and to assess its predictability. Results showed very substantial variability in fertiliser N requirements within fields, typically >150 kg ha−1, and large variation in optimal yields, typically >2 t ha−1. Despite this, calculated increases in yield and gross margin with N requirements perfectly matched across fields were surprisingly modest (compared to the uniform average rate). Implications are discussed, including the causes of the large remaining variation in grain yield, after N limitations were removed.

Author(s):  
Stanisław BIELSKI ◽  
Jan FALKOWSKI

The present investigations were undertaken, in which the winter triticale cultivar Twingo was examined, with the aim of analyzing production output, expressed by grain yield and its structure, as affected by different levels of nitrogen and magnesium fertilisation and assess and compare the economic efficiency of production technologies. This research encompassed the results of a three-year (2013-2015) field experiment conducted at the Research Station in Tomaszkowo near Olsztyn, Poland. The experiment was set up in a random, split-plot design, with four replications. The first order factor was nitrogen fertilisation (kg ha-1): 30, 60, 90, 120 and 150. The second order factor was the level of magnesium fertilisation (kg ha-1): 0 and 5 kg MgSO4∙7H2O. Statistical analysis of the results showed that the grain yield was significantly affected by the year of the trial, nitrogen and magnesium fertilisation, interaction of the first and second factors was not proven. The method based on the standard gross margin (SGM) was used for the economic evaluation of the three production technology differentiated costs levels. Three technologies with the highest, medium and lowest average yields were selected to the comparison. Differences in compared technologies concerned to the date and dose of nitrogen and magnesium fertilisation. Results showed, that increasing intensity of winter triticale technology in the field trial, caused the higher financial yield value of winter triticale, as well as direct costs and direct surplus. The direct surplus was higher by 24.4% between the lowest and the highest winter triticale technologies. The highest yield technology was characterized by the highest profitability.


2016 ◽  
pp. 87-92
Author(s):  
Szilvia Surányi ◽  
Zoltán Izsáki

The aim of this work was to analyse the effect of K, P and N supplies on the yield of winter barley in a long-term mineral fertilisation experiment with clearly distinct soil nutrient supply levels in order to develop fertilisation guidelines for winter barley growers. The experiment was set up in 1989 on a chernozem meadow soil calcareous in the deeper layers, applying all possible combinations of 4 levels each of N, P and K fertiliser, giving a total of 64 treatments. The results of analyses performed in 2011 and 2012 can be summarised as follows: In 2011, when rainfall supplies were deficient in the shooting phase, improved K supplies (324 mg kg-1 AL-K2O) increased the grain yield, but in 2012, when rainfall supplies were more evenly distributed, K supply levels in the range 210–335 mg kg-1 AL-K2O had no significant influence on the yield of winter barley. An analysis of the P treatments revealed that, compared to the 119–133 mg kg-1 AL-P2O5 level (P0), better P supplies (186–251 mg kg-1) led to a significant increase in the grain yield. In both years rising N rates significantly increased the yield up to an annual N rate of 160 kg ha-1.       4. A K×N interaction could only be detected in the nutrient supplies of winter barley in 2011. The yield-increasing effect of N fertiliser was more    pronounced at better K supply levels, while K fertiliser led to higher yields in the case of better N supplies.


2020 ◽  
Vol 23 (1) ◽  
pp. 47-58
Author(s):  
SS Tanu ◽  
P Biswas ◽  
S Ahmed ◽  
SC Samanta

A field experiment was conducted at Agronomy Field Laboratory, Patuakhali Science and Technology University, Dumki, Patuakhali from July 2018 to November 2018 to evaluate the effect of sunflower residues and herbicides on the yield and economic performance of transplanted Aman rice. Weed control methods tested were T1 = weedy check (Unweeded control), T2 = Weed-free check by hand weeding twice, T3 = Pendimethalin, T4 = Pretilachlor, T5 = Butachlor, T6 = Pyrazosulfuron ethyl, T7 = Bensulfuron methyl + Acetachlor, T8 = Bispyriback sodium, T9 = 2,4-D amine, T10 = MCPA, T11 = Sunflower residues, T12 = Sunflower residues + 100% Pyrazosulfuron ethyl, T13 = Sunflower residues + 75% Pyrazosulfuron ethyl, T14 = Sunflower residues + 50% Pyrazosulfuron ethyl. The experiment was laid out in a randomized complete block design with fourteen treatments replicated thrice. Weedy check registered significantly the highest total weed density (354.67 m-2) and total weed dry matter (51.81 g-2) while weed-free treatment by hand weeding twice recorded significantly the lowest total weed density (6.67 m-2) and total weed dry matter 0.49 g-2) . Weedy check produced the highest weed index (34.24%) and hand weeding produced the lowest. Among different herbicides applied alone, butachlor had the lowest total weed density (15 m-2) and total weed dry matter (6.43 g-2) after hand weeding. Hand weeding recorded the highest grain yield (5.14 t ha-1) which was statistically similar to pendimethalin, pretilachlor, butachlor, bensulfuron methyl + acetachlor and sunflower residues + 100% pyrazosulfuron ethyl. Higher grain yield was attributed to a higher number of panicle m-2, number of filled grains panicle-1 and 1000-grain weight. The highest gross margin (22955 Tk. ha-1) and benefit-cost ratio (1.32) were obtained from butachlor. Integration of sunflower residues with pyrazosulfuron ethyl produced effective weed suppression and satisfactory yield comparable to butachlor. Although the integration is less profitable than butachlor the farmers can use this technology as a feasible and environmentally sound approach in transplanted Aman rice field. Bangladesh Agron. J. 2020, 23(1): 47-58


1970 ◽  
Vol 34 (3) ◽  
pp. 425-434 ◽  
Author(s):  
PK Malaker ◽  
IH Mian

The efficacy of seed treatment and foliar spray with fungicides in controlling black point incidence of wheat seeds was evaluated in the field. Two seed treating fungicides, namely Vitavax-200 and Homai-80WP were used @ 0.25% of dry seed weight and foliar spray with Tilt-250EC (0.05%) was applied in six different schedules. Untreated and unsprayed controls were also maintained. Seed treatment with either Vitavax-200 or Homai-80WP significantly increased plant population and grain yield, but none of them was found effective in reducing black point incidence. On the other hand, foliar sprays with Tilt-250EC under all the spray schedules except spraying at 70 and 90 DAS significantly minimized the disease severity over unsprayed control. Among the different spray schedules, spraying at 30, 40, 50, 60, 70, 80, and 90 DAS appeared to be most effective, which was similar to spraying at 30, 45, 60, 75, and 90 DAS in reducing black point incidence and increasing grain yield. Economic analysis on yield advantage showed that the highest additional gross margin of Tk. 6120/ha with BCR 2.57 was obtained from five sprays applied at 30, 45, 60, 75, and 90 DAS. Key Words: Seed treatment, foliar spray, black point, wheat. DOI: 10.3329/bjar.v34i3.3968 Bangladesh J. Agril. Res. 34(3) : 425-434, September 2009


1970 ◽  
Vol 35 (2) ◽  
pp. 287-296
Author(s):  
M Akkas Ali ◽  
M Robiul Alam ◽  
MSH Molla ◽  
F Islam

The experiment was conducted at multilocation testing (MLT) site, Sujanagar, Pabna during the year of 2003-2004 to find out a soil test based economically viable fertilizer recommendation for the cropping pattern Boro-T. aman. Six treatments viz., moderate yield goal (MYG), high yield goal (HYG), integrated plant nutrient system (IPNS), recommended fertilizer of FRG' 97 (BARC) guide (RF), farmers' practice (FP), and absolute control were employed for the study. The grain yield of Boro and T. aman rice increased 18 and 14%, respectively, by IPNS compared to farmers' practice. Total grain yield of rice was increased by about 16% in the IPNS fertilizer package compared to farmers' practice. Fertilizer nutrients supplied both from organic and inorganic sources in adequate amount have a positive effect on productivity of soil. On an average it was found that highest grain yields of Boro rice (5.37 t/ha) and T. aman (4.49 t/ha) were obtained from integrated plant nutrient system (IPNS) where farmers’ practice gave yield of 4.55 and 3.94 t/ha. The highest average gross margin (70385 Tk./ha) and marginal benefit cost ratio (3.78) was also obtained from IPNS plots. Keywords: Crop productivity; fertilizer management; cropping pattern. DOI: 10.3329/bjar.v35i2.5892Bangladesh J. Agril. Res. 35(2) : 287-296, June 2010


2017 ◽  
Vol 30 (3) ◽  
pp. 670-678 ◽  
Author(s):  
ROGÉRIO PERES SORATTO ◽  
TIAGO ARANDA CATUCHI ◽  
EMERSON DE FREITAS CORDOVA DE SOUZA ◽  
JADER LUIS NANTES GARCIA

ABSTRACT The objective of this work was to evaluate the effect of plant densities and sidedressed nitrogen (N) rates on nutrition and productive performance of the common bean cultivars IPR 139 and Pérola. For each cultivar, a randomized complete block experimental design was used in a split-plot arrangement, with three replicates. Plots consisted of three plant densities (5, 7, and 9 plants ha-1) and subplots of five N rates (0, 30, 60, 120, and 180 kg ha-1). Aboveground dry matter, leaf macro- and micronutrient concentrations, yield components, grain yield, and protein concentration in grains were evaluated. Lower plant densities (5 and 7 plants m-1) increased aboveground dry matter production and the number of pods per plant and did not reduce grain yield. In the absence of N fertilization, reduction of plant density decreased N concentration in common bean leaves. Nitrogen fertilization linearly increased dry matter and leaf N concentration, mainly at lower plant densities. Regardless of plant density, the N supply linearly increased grain yield of cultivars IPR 139 and Pérola by 17.3 and 52.2%, respectively.


1961 ◽  
Vol 3 (30) ◽  
pp. 1133-1151 ◽  
Author(s):  
R. Haefeli

AbstractStarting from Glen’s flow law for ice and from a series of assumptions based in part on observations in Greenland and in the Jungfraujoch, the velocity distribution (horizontal velocity component) and surface configuration is derived for a strip-shaped ice sheet in a stationary state. For the choice n = 3 − 4 of the exponent in the power-law flow relation, there is extensive agreement between the theoretically calculated surface profile and the east-west profile measured through “Station Centrale” by Expéditions Polaires Françaises. The corresponding theoretical solution for a circular ice sheet is also given. As a first application of this theory, an attempt is made to calculate the average rate of accumulation in Antarctica from its surface profile (assumed circular in plan) and from the flow-law parameters derived from the Greenland Ice Sheet. It is also shown that a change in accumulation has only a small influence on the total ice thickness of an ice sheet. A method of calculating approximately the age of ice in an ice sheet, based on the foregoing theory, is illustrated by applying it to the Greenland Ice Sheet. After comparing the present theory with that of Nye, a general expression for the surface profile of an ice sheet with constant accumulation is set up and discussed by means of comparison with two profiles through Antarctica.


2016 ◽  
Vol 96 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Yunfei* Jiang ◽  
Claude D. Caldwell

Camelina [Camelina sativa (L.) Crantz] has potential in aquaculture, livestock feed production, and the biofuel industry. It is necessary to determine the appropriate production technology for the newly introduced crop under different environmental conditions. The objective of this 2-year study was to measure the response of five camelina genotypes in terms of seed yield, yield components, and disease incidence to applied nitrogen (N) at multiple sites in the Maritime provinces of eastern Canada. The factorial experiment was set up as a randomized complete block design. The two factors were six N rates (0, 25, 50, 100, 150, and 200 kg ha−1 N) and five genotypes of camelina (Calena, CDI002, CDI005, CDI007, and CDI008). The interactive effect of N rates and genotypes was considered. Results showed that camelina, which is usually considered a low-input crop, responded positively to increased applied N at rates up to 200 kg ha−1 N. Seed yield responded differently to applied N rates depending on genotype. Branch and pod development were decisive for seed yield. The advanced line CDI007 had the highest yield potential among the five genotypes. Downy mildew infection was positively correlated with applied N rates; however, seed yield was not significantly affected by downy mildew infection.


Genetika ◽  
2004 ◽  
Vol 36 (2) ◽  
pp. 121-131 ◽  
Author(s):  
Mile Secanski ◽  
Tomislav Zivanovic ◽  
Goran Todorovic ◽  
Gordana Surlan-Momirovic

The aim of the present study was to evaluate the following parameters for the grain yield of silage maize: variability of inbred lines and their diallel hybrids, superior-parent heterosis and components of genetic variability and heritability on the basis of the diallel set. The two-year four-replicate trial was set up according to the randomized complete-block design at Zemun Polje. It was determined that a genotype, year and their interaction significantly affected variability of this trait. The highest. i.e. the lowest grain yield, on the average for both investigation years. was recorded in the silage maize inbred lines ZPLB402 and ZPLB405. respectively. The analysis of components of genetic variance for grain yield shows that the additive component (D) was lower than the dominant (H1 and H2) genetic variance, while a positive component F and the frequency of dominant (u) and recessive (v) genes for this observed trait point to prevalence of dominant genes over recessive ones. Furthermore. this is confirmed by the ratio of dominant to recessive genes in parental genotypes for grain yield (Kd/Kr> 1) that is greater than unity in both years of investigation. The estimated value of the average degree of dominance (H1/D)1/2 exceeds unity, pointing out to superdominance in inheritance of this trait in both years of investigation. Results of Vr/Vr regression analysis indicate superdominance in inheritance of grain yield. Moreover. a registered presence of non-allelic interaction points out to the need to study effects of epistasis, as it can have a greater significance in certain hybrids. A greater value of dominant than additive variance resulted in high values of broad-sense heritability for grain yield in both investigation years (98.71%, i.e. 97.19% in 1997, i.e. 1998, respectively). and low values of narrow-sense heritability (11.9% in 1997 and 12.2% in 1998).


2005 ◽  
Vol 54 (3-4) ◽  
pp. 309-324 ◽  
Author(s):  
László Márton

The effect of natural rainfall and N, P and K nutrients on the yield of maize was investigated in 16 years of a long-term fertilization experiment set up at the Experimental Station of the Institute in Nagyhörcsök. The soil was a calcareous chernozem, having the following characteristics: pH (KCl): 7.3, CaCO 3 : 5%, humus: 3%, clay: 20-22%, AL-soluble P 2 O 5 : 60-80, AL-soluble K 2 O: 180-200, KCl-soluble Mg: 150-180; KCl+ EDTA-soluble Mn, Cu and Zn content: 80-150, 2-3 and 1-2 mg·kg -1 . The experiment had a split-split-plot design with 20 treatments in 4 replications, giving a total of 80 plots. The treatments involved three levels each of N and P and two levels of K in all possible combinations (3×3×2=18), together with an untreated control and one treatment with a higher rate of NPK, not included in the factorial system. The main results can be summarized as follows: An analysis of the weather in the 16 experimental years revealed that there were no average years, as two years were moderately dry (1981, 1982), eight were very dry (1973, 1978, 1986, 1989, 1990, 1993, 1997, 2002) and six were very wet (1969, 1974, 1977, 1994, 1998, 2001). In dry years the N, NP and NK treatments led to a yield increment of over 3.0  t·ha -1 (3.2 t·ha -1 ) (81%) compared with the unfertilized control, while the full NPK treatment caused hardly any increase in the maize yield (7.2 t·ha -1 ). In the case of drought there was a 4.0% yield loss in the N, NP and NK treatments compared to the same treatments in the dry years. This loss was only 1.0% in the NPK treatment. In very wet years the positive effects of a favourable water supply could be seen even in the N, NP and NK treatments (with yields of around 7.4 t·ha -1 ). The yield increment in these treatments compared with the droughty years averaged 8%, while balanced NPK fertilization led to a further 2% increase (10%). Significant quadratic correlations were found between the rainfall quantity during the vegetation period and the yield, depending on the nutrient supplies (Ø: R = 0.7787***, N: R = 0.8997***, NP: R = 0.9338***, NK: R = 0.9574***, NPK: R = 0.8906***). The optimum rainfall quantity and the corresponding grain yield ranged from 328-349 mm and 5.0-7.7 t·ha -1 , respectively, depending on the fertilizer rate. The grain yield increment obtained per mm rainfall in the case of optimum rainfall supplies was found to be 14.3-23.2 kg·ha -1 , while the quantity of rainfall utilized during the vegetation period for the production of 1 kg air-dry matter in the case of maximum yield amounted to 698, 449, 480, 466 and 431 litres in the control, N, NP, NK and NPK treatments, respectively. It was clear from the 43-year meteorological database for the experimental station (1961-2003) that over the last 23 years (1981-2003) the weather has become substantially drier. Compared with the data for the previous 20 years (1961-1980) there was an increase of 20, 500 and 50% in the number of average, dry and droughty years, no change in the number of wet years and a 71% drop in the number of very wet years.


Sign in / Sign up

Export Citation Format

Share Document