scholarly journals Evaluation of the time-of-day effect of herbicides applied POST on protoporphyrinogen IX oxidase–resistant and –susceptible Palmer amaranth (Amaranthus palmeri)

2019 ◽  
Vol 33 (5) ◽  
pp. 651-657
Author(s):  
J. Drake Copeland ◽  
Garret B. Montgomery ◽  
Lawrence E. Steckel

AbstractStudies to evaluate the effect of application time of day (TOD) and protoporphyrinogen IX oxidase (PPO)-inhibiting herbicide–resistant Palmer amaranth on the efficacy of commonly used herbicides was conducted in Tennessee in 2017 and 2018. Treatments of fomesafen, lactofen, acifluorfen, paraquat, glufosinate, glufosinate plus fomesafen, paraquat plus fomesafen, and paraquat plus metribuzin were applied to PPO-resistant (PPO-R) and PPO-susceptible (PPO-S) Palmer amaranth at sunrise and midday. Control of Palmer amaranth with acifluorfen, glufosinate, and glufosinate plus fomesafen was greater with the midday application. However, control of Palmer amaranth with paraquat-based treatments was greater with the sunrise application. TOD effects on PPO-inhibiting herbicides and paraquat-based treatments were more prominent for the PPO-R Palmer amaranth biotype. The TOD effect observed when applying glufosinate in early morning hours on PPO-S Palmer amaranth can be minimized by adding fomesafen to the tank mix. However, this strategy did not provide consistent performance on PPO-R Palmer amaranth. The percentages of living Palmer amaranth plants and control were greater when paraquat plus metribuzin was applied to both biotypes. These results highlight the necessity of at least two effective herbicide sites of action for POST applications intended for controlling PPO-R Palmer amaranth. In addition, the timing of herbicide applications can affect their activity in both PPO-R and PPO-S Palmer amaranth populations.

2014 ◽  
Vol 28 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Rand M. Merchant ◽  
A. Stanley Culpepper ◽  
Peter M. Eure ◽  
John S. Richburg ◽  
L. Bo Braxton

Field experiments were conducted in Macon County, Georgia, during 2010 and 2011 to determine the impact of new herbicide-resistant cotton and respective herbicide systems on the control of glyphosate-resistant Palmer amaranth. Sequential POST applications of 2,4-D or glufosinate followed by diuron plus MSMA directed at layby (late POST-directed) controlled Palmer amaranth 62 to 79% and 46 to 49% at harvest when the initial application was made to 8- or 18–cm-tall Palmer amaranth, in separate trials, respectively. Mixtures of glufosinate plus 2,4-D applied sequentially followed by the layby controlled Palmer amaranth 95 to 97% regardless of Palmer amaranth height. Mixing glyphosate with 2,4-D improved control beyond that observed with 2,4-D alone, but control was still only 79 to 86% at harvest depending on 2,4-D rate. Sequential applications of glyphosate plus 2,4-D controlled Palmer amaranth 95 to 96% following the use of either pendimethalin or fomesafen. Seed cotton yield was at least 30% higher with 2,4-D plus glufosinate systems compared to systems with either herbicide alone. The addition of pendimethalin and/or fomesafen PRE did not improve Palmer amaranth control or yields when glufosinate plus 2,4-D were applied sequentially followed by the layby. The addition of these residual herbicides improved at harvest control (87 to 96%) when followed by sequential applications of 2,4-D or 2,4-D plus glyphosate; yields from these systems were similar to those with glufosinate plus 2,4-D. Comparison of 2,4-D and 2,4-DB treatments confirmed that 2,4-D is a more effective option for the control of Palmer amaranth. Results from these experiments suggest cotton with resistance to glufosinate, glyphosate, and 2,4-D will improve Palmer amaranth management. At-plant residual herbicides should be recommended for consistent performance of all 2,4-D systems across environments, although cotton with resistance to glyphosate, glufosinate, and 2,4-D will allow greater flexibility in selecting PRE herbicide(s), which should reduce input costs, carryover concerns, and crop injury when compared to current systems.


2015 ◽  
Vol 29 (4) ◽  
pp. 716-729 ◽  
Author(s):  
Christopher J. Meyer ◽  
Jason K. Norsworthy ◽  
Bryan G. Young ◽  
Lawrence E. Steckel ◽  
Kevin W. Bradley ◽  
...  

Herbicide-resistantAmaranthusspp. continue to cause management difficulties in soybean. New soybean technologies under development, including resistance to various combinations of glyphosate, glufosinate, dicamba, 2,4-D, isoxaflutole, and mesotrione, will make possible the use of additional herbicide sites of action in soybean than is currently available. When this research was conducted, these soybean traits were still regulated and testing herbicide programs with the appropriate soybean genetics in a single experiment was not feasible. Therefore, the effectiveness of various herbicide programs (PRE herbicides followed by POST herbicides) was evaluated in bare-ground experiments on glyphosate-resistant Palmer amaranth and glyphosate-resistant waterhemp (both tall and common) at locations in Arkansas, Illinois, Indiana, Missouri, Nebraska, and Tennessee. Twenty-five herbicide programs were evaluated; 5 of which were PRE herbicides only, 10 were PRE herbicides followed by POST herbicides 3 to 4 wks after (WA) the PRE application (EPOST), and 10 were PRE herbicides followed by POST herbicides 6 to 7 WA the PRE application (LPOST). Programs with EPOST herbicides provided 94% or greater control of Palmer amaranth and waterhemp at 3 to 4 WA the EPOST. Overall, programs with LPOST herbicides resulted in a period of weed emergence in which weeds would typically compete with a crop. Weeds were not completely controlled with the LPOST herbicides because weed sizes were larger (≥ 15 cm) compared with their sizes at the EPOST application (≤ 7 cm). Most programs with LPOST herbicides provided 80 to 95% control at 3 to 4 WA applied LPOST. Based on an orthogonal contrast, using a synthetic-auxin herbicide LPOST improves control of Palmer amaranth and waterhemp over programs not containing a synthetic-auxin LPOST. These results show herbicides that can be used in soybean and that contain auxinic- or HPPD-resistant traits will provide growers with an opportunity for better control of glyphosate-resistant Palmer amaranth and waterhemp over a wide range of geographies and environments.


2014 ◽  
Vol 28 (1) ◽  
pp. 28-38 ◽  
Author(s):  
Amit J. Jhala ◽  
Lowell D. Sandell ◽  
Neha Rana ◽  
Greg R. Kruger ◽  
Stevan Z. Knezevic

Palmer amaranth is a difficult-to-control broadleaf weed that infests corn and soybean fields in south-central and southwestern Nebraska and several other states in the United States. The objectives of this research were to confirm triazine and 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide-resistant Palmer amaranth in Nebraska and to determine sensitivity and efficacy of POST-applied corn herbicides for control of resistant and susceptible Palmer amaranth biotypes. Seeds from a putative HPPD-resistant Palmer amaranth biotype from Fillmore County, NE were collected from a seed corn production field in fall 2010. The response of Palmer amaranth biotypes to 12 rates (0 to 12×) of mesotrione, tembotrione, topramezone, and atrazine was evaluated in a dose–response bioassay in a greenhouse. On the basis of the values at the 90% effective dose (ED90) level, the analysis showed a 4- to 23-fold resistance depending upon the type of HPPD-inhibiting herbicide being investigated and susceptible biotype used for comparison. This biotype also had a 9- to 14-fold level of resistance to atrazine applied POST. Results of a POST-applied herbicide efficacy study suggested a synergistic interaction between atrazine and HPPD-inhibiting herbicides that resulted in > 90% control of all Palmer amaranth biotypes. The resistant biotype had a reduced sensitivity to acetolactate synthase inhibiting herbicides (halosulfuron and primisulfuron), a photosystem-II inhibitor (bromoxynil), and a protoporphyrinogen oxidase inhibitor (fluthiacet-methyl). Palmer amaranth biotypes were effectively controlled (≥ 90%) with glyphosate, glufosinate, and dicamba, whereas 2,4-D ester provided 81 to 83% control of the resistant biotype and > 90% control of both susceptible biotypes.


2017 ◽  
Vol 31 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Maxwel C. Oliveira ◽  
Amit J. Jhala ◽  
Todd Gaines ◽  
Suat Irmak ◽  
Keenan Amundsen ◽  
...  

Field and greenhouse experiments were conducted in Nebraska to (1) confirm the 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting resistant-waterhemp biotype (HPPD-RW) by quantifying the resistance levels in dose-response studies, and (2) to evaluate efficacy of PRE-only, POST-only, and PRE followed by POST herbicide programs for control of HPPD-RW in corn. Greenhouse dose-response studies confirmed that the suspected waterhemp biotype in Nebraska has evolved resistance to HPPD-inhibiting herbicides with a 2- to 18-fold resistance depending upon the type of HPPD-inhibiting herbicide being sprayed. Under field conditions, at 56 d after treatment, ≥90% control of the HPPD-RW was achieved with PRE-applied mesotrione/atrazine/S-metolachlor+acetochlor, pyroxasulfone (180 and 270 g ai ha−1), pyroxasulfone/fluthiacet-methyl/atrazine, and pyroxasulfone+saflufenacil+atrazine. Among POST-only herbicide programs, glyphosate, a premix of mesotrione/atrazine tank-mixed with diflufenzopyr/dicamba, or metribuzin, or glufosinate provided ≥92% HPPD-RW control. Herbicide combinations of different effective sites of action in mixtures provided ≥86% HPPD-RW control in PRE followed by POST herbicide programs. It is concluded that the suspected waterhemp biotype is resistant to HPPD-inhibiting herbicides and alternative herbicide programs are available for effective control in corn. The occurrence of HPPD-RW in Nebraska is significant because it limits the effectiveness of HPPD-inhibiting herbicides.


Weed Science ◽  
2020 ◽  
Vol 68 (6) ◽  
pp. 582-593
Author(s):  
Denis J. Mahoney ◽  
David L. Jordan ◽  
Nilda Roma-Burgos ◽  
Katherine M. Jennings ◽  
Ramon G. Leon ◽  
...  

AbstractPalmer amaranth (Amaranthus palmeri S. Watson) populations resistant to acetolactate synthase (ALS)-inhibiting herbicides and glyphosate are fairly common throughout the state of North Carolina (NC). This has led farm managers to rely more heavily on herbicides with other sites of action (SOA) for A. palmeri control, especially protoporphyrinogen oxidase and glutamine synthetase inhibitors. In the fall of 2016, seeds from A. palmeri populations were collected from the NC Coastal Plain, the state’s most prominent agricultural region. In separate experiments, plants with 2 to 4 leaves from the 110 populations were treated with field use rates of glyphosate, glufosinate-ammonium, fomesafen, mesotrione, or thifensulfuron-methyl. Percent visible control and survival were evaluated 3 wk after treatment. Survival frequencies were highest following glyphosate (99%) or thifensulfuron-methyl (96%) treatment. Known mutations conferring resistance to ALS inhibitors were found in populations surviving thifensulfuron-methyl application (Ala-122-Ser, Pro-197-Ser, Trp-574-Leu, and/or Ser-653-Asn), in addition to a new mutation (Ala-282-Asp) that requires further investigation. Forty-two populations had survivors after mesotrione application, with one population having 17% survival. Four populations survived fomesafen treatment, while none survived glufosinate. Dose–response studies showed an increase in fomesafen needed to kill 50% of two populations (LD50); however, these rates were far below the field use rate (less than 5 g ha−1). In two populations following mesotrione dose–response studies, a 2.4- to 3.3-fold increase was noted, with LD90 values approaching the field use rate (72.8 and 89.8 g ha−1). Screening of the progeny of individuals surviving mesotrione confirmed the presence of resistance alleles, as there were a higher number of survivors at the 1X rate compared with the parent population, confirming resistance to mesotrione. These data suggest A. palmeri resistant to chemistries other than glyphosate and thifensulfuron-methyl are present in NC, which highlights the need for weed management approaches to mitigate the evolution and spread of herbicide-resistant populations.


2015 ◽  
Vol 29 (4) ◽  
pp. 758-770 ◽  
Author(s):  
Charles W. Cahoon ◽  
Alan C. York ◽  
David L. Jordan ◽  
Wesley J. Everman ◽  
Richard W. Seagroves ◽  
...  

Cotton growers rely heavily upon glufosinate and various residual herbicides applied preplant, PRE, and POST to control Palmer amaranth resistant to glyphosate and acetolactate synthase-inhibiting herbicides. Recently deregulated in the United States, cotton resistant to dicamba, glufosinate, and glyphosate (B2XF cotton) offers a new platform for controlling herbicide-resistant Palmer amaranth. A field experiment was conducted in North Carolina and Georgia to determine B2XF cotton tolerance to dicamba, glufosinate, and glyphosate and to compare Palmer amaranth control by dicamba to a currently used, nondicamba program in both glufosinate- and glyphosate-based systems. Treatments consisted of glyphosate or glufosinate applied early POST (EPOST) and mid-POST (MPOST) in a factorial arrangement of treatments with seven dicamba options (no dicamba, PRE, EPOST, MPOST, PRE followed by [fb] EPOST, PRE fb MPOST, and EPOST fb MPOST) and a nondicamba standard. The nondicamba standard consisted of fomesafen PRE, pyrithiobac EPOST, and acetochlor MPOST. Dicamba caused no injury when applied PRE and only minor, transient injury when applied POST. At time of EPOST application, Palmer amaranth control by dicamba or fomesafen applied PRE, in combination with acetochlor, was similar and 13 to 17% greater than acetochlor alone. Dicamba was generally more effective on Palmer amaranth applied POST rather than PRE, and two applications were usually more effective than one. In glyphosate-based systems, greater Palmer amaranth control and cotton yield were obtained with dicamba applied EPOST, MPOST, or EPOST fb MPOST compared with the standard herbicides in North Carolina. In contrast, dicamba was no more effective than the standard herbicides in the glufosinate-based systems. In Georgia, dicamba was as effective as the standard herbicides in a glyphosate-based system only when dicamba was applied EPOST fb MPOST. In glufosinate-based systems in Georgia, dicamba was as effective as standard herbicides only when dicamba was applied twice.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Michael M. Houston ◽  
L. Tom Barber ◽  
Jason K. Norsworthy ◽  
Trent L. Roberts

Protoporphyrinogen oxidase- (PPO-) resistant Amaranthus palmeri (S.) Wats. (Palmer amaranth) was confirmed in Arkansas in 2015. Field trials were conducted in Crawfordsville, Gregory, and Marion, Arkansas in 2016, and Crawfordsville and Marion in 2017, assessing PPO-resistant Palmer amaranth control options in Glycine max (L.) Merr. (soybean). Twelve trials consisted of 26 preemergence (PRE) treatments, evaluated for Palmer amaranth control and density reduction at 28 days after treatment (DAT). Treatments that consisted of PPO- or acetolactate synthase- (ALS-) inhibiting herbicides such as flumioxazin (72 g ai ha−1) or sulfentrazone + cloransulam (195 g ha−1 + 25 g ha−1) controlled Palmer amaranth <60%. At 28 DAT, treatments including mixtures of a very-long-chain fatty acid (VLCFA) plus the photosystem II- (PSII-) inhibiting herbicide metribuzin provided increased control over single herbicide sites of action (SOA) or herbicides mixtures to which Palmer amaranth was resistant. Pyroxasulfone + metribuzin (149 g ha−1 + 314 g ha−1) controlled Palmer amaranth 91% control across twelve trials at 28 DAT. S-metolachlor alone did not provide consistent, acceptable control of PPO-resistant Palmer amaranth (55–77%); subsequent research has determined that these populations are resistant to S-metolachlor. A minimum of two effective herbicides should be included in soybean PRE programs for control of PPO-resistant Palmer amaranth.


2007 ◽  
Vol 17 (1) ◽  
pp. 102-106
Author(s):  
Russell W. Wallace ◽  
John C. Hodges

Herbicides were applied pre-emergence (PRE) and early post-directed (EP-DIR) to determine their effects on crop injury and control of palmer amaranth (Amaranthus palmeri) and nutsedge (Cyperus spp.) in field-grown cannas (Canna ×generalis). Results indicate that PRE-applied s-metolachlor + pendimethalin was the most effective treatment for controlling palmer amaranth. All other PRE-applied treatments failed to adequately control palmer amaranth. While moderate and temporary stunting was visible, in general, no herbicides (except trifloxysulfuron) significantly decreased canna rhizome yields. EP-DIR s-metolachlor or s-metolachlor + pendimethalin did not improve nutsedge control unless halosulfuron was included in the tank mixture. Addition of halosulfuron did not increase crop injury or decrease canna yields but did significantly reduce the number of nutsedge tubers found in the canna rhizomes at harvest. Results suggest that all PRE-applied herbicides tested were safe for cannas, but the lack of adequate palmer amaranth and nutsedge control prohibits their use as stand-alone herbicides for canna production in the midsouth. Post-directing applications of halosulfuron significantly improved nutsedge control and reduced tuber infestation and, therefore, should be included in all nutsedge management programs for canna rhizome production.


Weed Science ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 4-14 ◽  
Author(s):  
Christopher R. Johnston ◽  
Peter M. Eure ◽  
Timothy L. Grey ◽  
A. Stanley Culpepper ◽  
William K. Vencill

The efficacy of WSSA Group 4 herbicides has been reported to vary with dependence on the time of day the application is made, which may affect the value of this mechanism of action as a control option and resistance management tool for Palmer amaranth. The objectives of this research were to evaluate the effect of time of day for application on 2,4-D and dicamba translocation and whether or not altering translocation affected any existing variation in phytotoxicity seen across application time of day. Maximum translocation (Tmax) of [14C]2,4-D and [14C]dicamba out of the treated leaf was significantly increased 52% and 29% to 34% in one of two repeated experiments for each herbicide, respectively, with application at 7:00 AM compared with applications at 2:00 PM and/or 12:00 AM. Applications at 7:00 AM increased [14C]2,4-D distribution to roots and increased [14C]dicamba distribution above the treated leaf compared with other application timings. In phytotoxicity experiments, dicamba application at 8 h after exposure to darkness (HAED) resulted in significantly lower dry root biomass than dicamba application at 8 h after exposure to light (HAEL). Contrasts indicated that injury resulting from dicamba application at 8 HAEL, corresponding to midday, was significantly reduced with a root treatment of 5-[N-(3,4-dimethoxyphenylethyl)methylamino]-2-(3,4-dimethoxyphenyl)-2-isopropylvaleronitrile hydrochloride (verapamil) compared with injury observed with dicamba application and a root treatment of verapamil at 8 HAED, which corresponded to dawn. Overall, time of application appears to potentially influence translocation of 2,4-D and dicamba. Furthermore, inhibition of translocation appears to somewhat influence variation in phytotoxicity across times of application. Therefore, translocation may be involved in the varying efficacy of WSSA Group 4 herbicides due to application time of day, which has implications for the use of this mechanism of action for effective control and resistance management of Palmer amaranth.


Sign in / Sign up

Export Citation Format

Share Document