scholarly journals Online Measurement of Glucose Consumption from HepG2 Cells Using an Integrated Bioreactor and Enzymatic Assay

2019 ◽  
Vol 91 (8) ◽  
pp. 5184-5190 ◽  
Author(s):  
Anna G. Adams ◽  
Radha Krishna Murthy Bulusu ◽  
Nikita Mukhitov ◽  
Jose L. Mendoza-Cortes ◽  
Michael G. Roper
2018 ◽  
Author(s):  
Anna Adams ◽  
Radha Krishna Murthy Bulusu ◽  
Nikita Mukhitov ◽  
Jose Mendoza-Cortes ◽  
Michael Roper

In this work, we developed a microfluidic bioreactor for optimizing growth and maintaining structure and function of HepG2, and when desired, the device could be removed and the extracellular output from the bioreactor combined with enzymatic glucose reagents into a droplet-based microfluidic system. The intensity of the resulting fluorescent assay product in the droplets was measured, and was directly correlated to glucose concentration, allowing the effect of insulin on glucose consumption in the HepG2 cells to be observed and quantified online and in near real-time.


2018 ◽  
Author(s):  
Anna Adams ◽  
Radha Krishna Murthy Bulusu ◽  
Nikita Mukhitov ◽  
Jose Mendoza-Cortes ◽  
Michael Roper

In this work, we developed a microfluidic bioreactor for optimizing growth and maintaining structure and function of HepG2, and when desired, the device could be removed and the extracellular output from the bioreactor combined with enzymatic glucose reagents into a droplet-based microfluidic system. The intensity of the resulting fluorescent assay product in the droplets was measured, and was directly correlated to glucose concentration, allowing the effect of insulin on glucose consumption in the HepG2 cells to be observed and quantified online and in near real-time.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Xiao-Tian Zhang ◽  
Chun-Jiang Yu ◽  
Jian-Wei Liu ◽  
Yan-Ping Zhang ◽  
Chao Zhang ◽  
...  

We analyzed the effects of a traditional Chinese medicine, Qizhi Jiangtang Jiaonang (QJJ), on insulin resistance (IR) in vitro. After an in vitro model of IR was established by treating human liver cancer cells (HepG2 cells) with palmitic acid, the cells were then treated with various concentrations of QJJ. Treatment with 400 µM palmitic acid for 24 h induced IR in HepG2 cells. The survival rate for HepG2 cells in the IR group was significantly lower than that of the untreated control group (P< 0.001); however, QJJ restored HepG2 cell survival (P< 0.001). As compared with HepG2 cells in the IR group, QJJ at all doses analyzed significantly increased glucose consumption (allP< 0.05). Moreover, treatment with all the QJJ doses significantly reduced the mean intracellular reactive oxygen species levels as compared with the IR group (allP< 0.05). Furthermore, high-dose QJJ reduced both TNF-αand IL-6 levels as compared to the IR group (allP< 0.05). QJJ ameliorated the altered PI3K, GLUT4, and RAGE expression observed with IR. In conclusion, QJJ can improve IR in HepG2 cells, which may be mediated through the IRS-1/PI3K/GLUT4 signaling pathway as well as regulation of NF-κB-mediated inflammation and oxidative stress.


2012 ◽  
Vol 135 (3) ◽  
pp. 1471-1478 ◽  
Author(s):  
Jiukai Zhang ◽  
Chongde Sun ◽  
Youyou Yan ◽  
Qingjun Chen ◽  
Fenglei Luo ◽  
...  

2014 ◽  
Vol 66 (8) ◽  
pp. 377-382 ◽  
Author(s):  
Sabine U. Vorrink ◽  
Ehab H. Sarsour ◽  
Alicia K. Olivier ◽  
Larry W. Robertson ◽  
Prabhat C. Goswami ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Xiang-Zhou Li ◽  
Sheng Zhang

Eucommia ulmoidesOliv. (E. ulmoidesOliv.) and moso bamboo (Phyllostachys pubescens) leaves are used as folk medicines in central-western China to treat diabetes. To investigate the hypoglycemic activity of the effervescent granules prepared usingE. ulmoidesOliv.and moso bamboo leaves (EBEG) in HepG2 cells, EBEG were prepared with 5% of each of polysaccharides and chlorogenic acids from moso bamboo andE. ulmoidesOliv.leaves, respectively. HepG2 cells cultured in a high-glucose medium were classified into different groups. The results displayed EBEG-treated cells showed better glucose utilization than the negative controls; thus, the hypoglycemic effect of EBEG was much greater than that of granules prepared using either component alone, thereby indicating that this effect was due to a synergistic action of the components. Further, glucose consumption levels in the cells treated with EBEG (156.35% at 200 μg/mL) and the positive controls (metformin, 162.29%; insulin, 161.52%) were similar. Thus, EBEG exhibited good potential for use as a natural antidiabetic agent. The hypoglycemic effect of EBEG could be due to the synergistic action of polysaccharides from the moso bamboo leaves and chlorogenic acids fromE. ulmoidesOliv. leaves via the inhibition of alpha-glucosidase and glucose-6-phosphate displacement enzyme.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Fujie Yan ◽  
Yushu Chen ◽  
Ramila Azat ◽  
Xiaodong Zheng

Mulberry anthocyanins possess many pharmacological effects including liver protection, anti-inflammation, and anticancer. The aim of this study was to evaluate whether mulberry anthocyanin extract (MAE) exerts beneficial effects against oxidative stress damage in HepG2 cells and Caenorhabditis elegans. In vitro, MAE prevented cytotoxicity, increased glucose consumption and uptake, and eliminated excessive intracellular free radicals in H2O2-induced cells. Moreover, MAE pretreatment maintained Nrf2, HO-1, and p38 MAPK stimulation and abolished upregulation of p-JNK, FOXO1, and PGC-1α that were involved in oxidative stress and insulin signalling modulation. In vivo, extended lifespan was observed in C. elegans damaged by paraquat in the presence of MAE, while these beneficial effects were disappeared in pmk-1 and daf-16 mutants. PMK-1 and SKN-1 were activated after exposure to paraquat and MAE suppressed PMK-1 activation but enhanced SKN-1 stimulation. Our findings suggested that MAE recovered redox status in HepG2 cells and C. elegans that suffered from oxidative stress, which might be by targeting MAPKs and Nrf2.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Yanfeng Gong ◽  
Huanbing Liu ◽  
Liming Tao

Abstract Background: The objectives of the present study are to investigate whether cajanonic acid A (CAA) can reduce insulin resistance (IR) in HepG2 cells and to gain a preliminary understanding of the mechanisms underlying this effect. Methods: Following induction of IR in HepG2 cells, we tested the regulatory effect of CAA on glucose consumption and evaluated hepatocyte production of IL-6, TGF-β, and key molecules in the insulin transduction pathway. A transwell co-culturing system was used to assess the effect of CAA on IR in HepG2 cells during the differentiation of CD4+ T cells by calculating the ratio of (Th17)/regulatory T cell (Treg). We evaluated the effect of CAA on the expression of IL-17RC cells and HepG2 cell apoptosis by immunofluorescence and flow cytometry assay. Results: CAA improved dexamethasone-induced reduction in glucose consumption in HepG2 cells, inhibited hepatocyte production of IL-6 and TGF-β, increased the expression of IL-17RC cell, and increased cellular apoptosis in insulin-resistant HepG2 cells. When co-cultured with CD4+ T cells, insulin-resistant HepG2 cells induced a decrease in the ratio of Th17/Treg, but CAA dampened the effect. Application of IL-6 and TGF-β, together with CAA, reversed the effect of CAA on insulin-resistant HepG2 cells. Overexpression of IL17R, however, counteracted the effect of IL-6 neutralizing antibody within the culture system. Conclusion: CAA can regulate the ratio of Th17/Treg by mediating the expression of IL-6 and TGF-β in insulin-resistant HepG2 cells.


2015 ◽  
Vol 29 (24) ◽  
pp. 2287-2290 ◽  
Author(s):  
Xiaopo Zhang ◽  
Shuai Wang ◽  
Yonghui Li ◽  
Dan Zhao ◽  
Ni An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document