Highly Soluble and Stable, High Release Rate Nanocellulose Codrug Delivery System of Curcumin and AuNPs for Dual Chemo-Photothermal Therapy

2022 ◽  
Author(s):  
Yan Tian ◽  
Dongmei Jia ◽  
Mahmut Dirican ◽  
Meng Cui ◽  
Dongjun Fang ◽  
...  
2017 ◽  
Vol 9 (3) ◽  
pp. 55
Author(s):  
Manjunath P. N. ◽  
Satish C. S. ◽  
Vasanti S. ◽  
Preetham A. C. ◽  
Naidu Ras

Objective: The aim of this study was to formulate and evaluate gastro retentive drug delivery system (GRRDS) using an effervescent approach for simvastatin.Methods: Floating tablets were prepared using directly compressible polymers hydroxypropyl methylcellulose (HPMC) K100M, HPMC K4M and carboxymethylcellulose sodium (NaCMC). The prepared tablets were subjected to pre-formulation studies like Compressibility index, Hausner ratio and post compression parameters like buoyancy/floating test and In vitro dissolution study.Results: Drug-excipient compatibility studies performed with the help of FTIR instrument indicated that there were no interactions. The DSC thermogram of the formulations revealed that crystalline form of simvastatin existed in the formulation which was confirmed by X-ray powder diffraction. Dissolution studies indicated that there was a decrease in the drug release with an increase in the polymer viscosity. The tablets prepared with low-viscosity grade HPMC K4M exhibited short Buoyancy Lag Time and floated for a longer duration as compared with formulations containing high viscosity grade HPMC K100M. The ‘n’ value for dissolution studies for all the formulations was found to be in the range of 0.647 to 0.975 indicating non-Fickian or anomalous drug transport. Conclusion: The drug release rate and floating duration of tablets depended on the nature of the polymer and other added excipients. The release rate of the drug can be optimized by using different ratios of polymers and other excipients. The formulation F8 achieved the optimized batch and complied with all the properties of the tablets.


2021 ◽  
Vol 16 (7) ◽  
pp. 1029-1036
Author(s):  
Hongzhu Wang ◽  
Mengxun Chen ◽  
Liping Song ◽  
Youju Huang

A key challenge for nanoparticles-based drug delivery system is to achieve manageable drug release in tumour cell. In this study, a versatile system combining photothermal therapy and controllable drug release for tumour cells using temperature-sensitive block copolymer coupled Au NRs@SiO2 is reported. While the Au NRs serve as hyperthermal agent and the mesoporous silica was used to improve the drug loading and decrease biotoxicity. The block copolymer acted as “gatekeeper” to regulate the release of model drug (Doxorubicin hydrochloride, DOX). Through in vivo and in vitro experiments, we achieved the truly controllable drug release and photothermal therapy with the collaborative effect of the three constituents of the nanocomposites. The reported nanocomposites pave the way to high-performance controllable drug release and photothermal therapy system.


2015 ◽  
Vol 15 (01) ◽  
pp. 1550012
Author(s):  
YANG ZHANG ◽  
RENJIE WU ◽  
YING HU ◽  
YU DONG ◽  
LIFENG SHEN ◽  
...  

Background: Antibiotic-impregnated calcium sulfate delivery systems (ACDS) are commonly used to treat chronic osteomyelitis. Our research is to investigate drug release in vitro over a longer period, as a cautious predictor of in vivo release. Methods: The local release behavior of antibiotic in vitro was simulated. The consecutive dynamic eluting experiment was performed based on the pro-operative characteristic of osteomyelitis patients and the determined results of drug concentration in the human drainage tissue fluid (DTF). The concentration of each drug in the receiving solution was detected by ultra-performance liquid chromatography-tandem quadrupole detector mass spectrometry. The ACDS was reviewed by scanning electronic microscopy (SEM) after 48 h, and prepared to be eluted for another examination after 33 days. The mechanism of antibiotic release was analyzed by using the Ritger–Peppas and Weibull equations. Results: The cumulative release rate of vancomycin in a vancomycin-calcium sulfate delivery system (VCDS) was 77.50 % (3.0 mm diameter) and 72.43 % (4.8 mm diameter), while that of the tobramycin in a tobramycin-calcium sulfate delivery system (TCDS) was 88.0 % (3.0 mm diameter) and 84.55 % (4.8 mm diameter). At the 15th day, approximately 27.92% of vancomycin was and 29.35% of tobramycin was released from the local implant in vivo. Using SEM, numerous vancomycin and tobramycin particles were found to be attached to the columnar calcium sulfate crystals at the start of the experiment. The release behavior of the two antibiotics followed a combination of Fickian diffusion and Case II transport mechanisms within the first 48 h, and a Fickian diffusion mechanism during the subsequent time period. The correlation coefficient of tobramycin and vancomycin in vivo and in vitro was 0.9704–0.9949 and 0.9549–0.9782, respectively. Conclusion: A good correlation of the in vivo and in vitro cumulative release rates was observed by comparing the cumulative release rate of drugs in vitro by means of the dynamic eluting model, and in the DTF. Therefore, our study has proved that it is possible to use the dynamic eluting model as a cautious predictor of in vivo release.


2019 ◽  
Vol 7 (24) ◽  
pp. 3811-3825 ◽  
Author(s):  
Panchanathan Manivasagan ◽  
Seung Won Jun ◽  
Van Tu Nguyen ◽  
Nguyen Thanh Phong Truong ◽  
Giang Hoang ◽  
...  

FA–COS–TGA–GNRs–DOX have been successfully designed as a drug delivery system for chemo-photothermal combination therapy.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 40 ◽  
Author(s):  
Ahmed Khames

Because Eplerenone (EPL) is a Biopharmaceutical Classification System (BCS) class-II drug and is prone to extensive liver degradation, it suffers from poor bioavailability after oral administration. This work aimed to prepare liquisolids loaded with EPL-nanoemulsions (EPL-NEs) that have a higher drug release rate and improved bioavailability by the oral route. Based on solubility studies, mixtures of Triacetin (oil) and Kolliphor EL/PEG 400 surfactant/co-surfactant (Smix) in different ratios were used to prepare EPL-NE systems, which were characterized and optimized for droplet size, zeta potential, polydispersity index (PDI), and drug content. Systems were then loaded onto liquisolid formulations and fully evaluated. A liquisolid formulation with better drug release and tableting properties was selected and compared to EPL-NEs and conventional EPL oral tablets in solid-state characterization studies and bioavailability studies in rabbits. Only five NEs prepared at 1:3, 1:2, and 3:1 Smix met the specified optimization criteria. The drug release rate from liquisolids was significantly increased (90% within 45 minutes). EPL-NE also showed significantly improved drug release but with a sustained pattern for four hours. Liquisolid bioavailability reached 2.1 and 1.2 relative to conventional tablets and EPL-NE. This suggests that the EPL-NE liquisolid is a promising oral delivery system with a higher drug release rate, enhanced absorption, decreased liver degradation, and improved bioavailability.


2007 ◽  
Vol 342-343 ◽  
pp. 497-500 ◽  
Author(s):  
Won Shik Chu ◽  
Sung Geun Kim ◽  
Hyung Jung Kim ◽  
Caroline S. Lee ◽  
Sung Hoon Ahn

The rapid prototyping (RP) technology has advanced in various fields such as verification of design, and functional test. Recently, researchers have studied bio-materials to fabricate functional bio-RP parts. In this research, a nano composite deposition system (NCDS) was developed to fabricate three-dimensional functional parts for bio-applications. In the hybrid process, the material removal process by mechanical micro machining and/or the deposition process are combined. NCDS uses biocompatible or biodegradable polymer resin as matrix and various bioceramics to form bio-composite materials. To test drug release rate in vivo environment, two different types of drug delivery system (DDS) were fabricated using the bio-composite materials. 1) Container type DDS used poly(DL-lactide-co-glycolide acid)(50:50) and 5-fluorouracil as the drug composite while polycaprolactone(PCL) served as the container of the drug. 2) Scaffold type DDS formed porous microstructure with poly(DL-lactide-co-glycolide acid)(50:50) and 5-fluorouracil composite. The effect of geometry of the DDS on release rate of drug is under investigation.


2015 ◽  
Vol 44 (22) ◽  
pp. 10343-10351 ◽  
Author(s):  
Xijian Liu ◽  
Qilong Ren ◽  
Fanfan Fu ◽  
Rujia Zou ◽  
Qian Wang ◽  
...  

A difunctional nanoplatform (CuS@mSiO2-PEG) acted as a NIR light induced photothermal-triggered drug delivery system for efficient chemo-photothermal therapy.


2016 ◽  
Vol 4 (36) ◽  
pp. 6043-6051 ◽  
Author(s):  
Junling Wang ◽  
Ran Wang ◽  
Fangrong Zhang ◽  
Yajun Yin ◽  
Leixia Mei ◽  
...  

A targeted drug delivery system based on carbon nanohorns for targeting P-glycoprotein and delivering etoposide into cells to overcome multidrug resistance.


Sign in / Sign up

Export Citation Format

Share Document