Review on Self-Heating of Biomass Materials: Understanding and Description

Author(s):  
Changdong Sheng ◽  
Can Yao
2020 ◽  
Vol 492 (1) ◽  
pp. 57-59
Author(s):  
S. L. Bazhenov ◽  
I. V. Sosnovskii ◽  
A. S. Kechek’yan

2019 ◽  
Vol 10 (32) ◽  
pp. 7484-7495 ◽  
Author(s):  
Huadong Yuan ◽  
Tiefeng Liu ◽  
Yujing Liu ◽  
Jianwei Nai ◽  
Yao Wang ◽  
...  

This review summarizes recent progress of biomass-derived materials in Li–S batteries. These materials are promising due to their advantages including strong physical and chemical adsorption, high abundance, low cost, and environmental friendliness.


2021 ◽  
Author(s):  
Juan Tang ◽  
Liping Liu ◽  
Shan Gao ◽  
Jiao Qin ◽  
Xiaoxuan Liu ◽  
...  

A simple thermal aptasensing platform was devised for sensitive detection of organophosphate pesticides (malathion as a model target) based on the efficient self-heating reaction of a warm pad with a...


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Nozomi Miyawaki ◽  
Takashi Fukushima ◽  
Takafumi Mizuno ◽  
Miyao Inoue ◽  
Kenji Takisawa

AbstractBiomass may ignite due to biological oxidation and chemical oxidation. If this phenomenon (spontaneous ignition) is controlled, it would be possible to produce biochar at a lower cost without the need for an external heat resource. We investigated if self-heating could be controlled by using sawdust and bark chips. When sawdust and bark chips were used under controlled conditions, the bark chips temperature increased to the torrefaction temperature. The ash content of bark chips was ~ 2%d.b. higher than that of sawdust; consequently, the inorganic substances contained in the bark chips might affect the self-heating. Self-heating was suppressed when inorganic substances were removed by washing with water. Therefore, the inorganic substances in the biomass might have affected self-heating. The inorganic element contents of the bark chips were measured by inductively coupled plasma optical emission spectrometry before and after washing. The potassium content of the bark chips was reduced remarkably by washing, and there was a possible influence of potassium on self-heating. Finally, the effect of moisture content on self-heating was investigated to obtain stable reactivity. Thus, at a moisture content of 40%w.b., a steady self-heating behavior may be realized.


Author(s):  
Om Prakash ◽  
Girish Pahwa ◽  
Chetan K. Dabhi ◽  
Yogesh S. Chauhan ◽  
Hussam Amrouch

Sign in / Sign up

Export Citation Format

Share Document