Comparative Studies of Environmentally Persistent Free Radicals on Total Particulate Matter Collected from Electronic and Tobacco Cigarettes

2020 ◽  
Vol 54 (9) ◽  
pp. 5710-5718
Author(s):  
Farhana Hasan ◽  
Lavrent Khachatryan ◽  
Slawo Lomnicki
Author(s):  
R. A. Crellin ◽  
G. O. Brooks ◽  
H. G. Horsewell

AbstractA ventilating filter for cigarettes has been developed which reduces the delivery of smoke constituents from the final two to three puffs. Since the normaI delivery for these three puffs can account for up to half the total particulate matter and nicotine delivered by the whole cigarette, usefuI reductions per cigarette can be produced. The ventilating filter consists of cellulose acetate tow wrapped in heat-shrinkable film and attached to a tobacco rod using perforated tipping paper. When the cigarette is smoked, the perforations remain closed by contact with the impermeable film until transfer of heat to the filter is sufficient to soften the filter tow and shrink the film. Ventilating air now enters the cigarette and reduces the smoke deliveries. The effectiveness of the ventilating filter is increased by using films which have a low shrink temperature, high shrink tension and a high degree of biaxiaI shrinkage. Increases in filter plasticiser level, tipping perforation area and puff volume improve the effectiveness of the ventilating filter but increases in cigarette paper porosity and tobacco butt length reduce the effectiveness


PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0156613 ◽  
Author(s):  
Andreas M. Neophytou ◽  
Elizabeth M. Noth ◽  
Sa Liu ◽  
Sadie Costello ◽  
S. Katharine Hammond ◽  
...  

Author(s):  
Steven L. Alderman ◽  
Chen Song ◽  
Serban C. Moldoveanu ◽  
Stephen K. Cole

AbstractThe relatively volatile nature of the particulate matter fraction of e-cigarette aerosols presents an experimental challenge with regard to particle size distribution measure-ments. This is particularly true for instruments requiring a high degree of aerosol dilution. This was illustrated in a previous study, where average particle diameters in the 10-50 nm range were determined by a high-dilution, electrical mobility method. Total particulate matter (TPM) masses calculated based on those diameters were orders of magnitude smaller than gravimetrically determined TPM. This discrepancy was believed to result from almost complete particle evaporation at the dilution levels of the electrical mobility analysis. The same study described a spectral transmission measurement of e-cigarette particle size in an undiluted state, and reported particles from 210-380 nm count median diameter. Observed particle number concentrations were in the 10Described here is a study in which e-cigarette aerosols were collected on Cambridge filters with adsorbent traps placed downstream in an effort to capture any material passing through the filter. Amounts of glycerin, propylene glycol, nicotine, and water were quantified on the filter and downstream trap. Glycerin, propylene glycol, and nicotine were effciently captured (> 98%) by the upstream Cambridge filter, and a correlation was observed between filtration efficiency and the partial vapor pressure of each component. The present analysis was largely inconclusive with regard to filter efficiency and particle-vapor partitioning of water. [Beitr. Tabakforsch. Int. 26 (2014) 183-190]


2009 ◽  
Vol 06 (12) ◽  
pp. 7-14
Author(s):  
Josiane LOYOLA ◽  
Simone Lorena QUITERIO ◽  
Viviane ESCALEIRA ◽  
Graciela ARBILLA

The petroleum industry has difficulties to assess the trace metal content in liquid fuels. In this work, it is proposed to solve this problem determining these metals by collecting particulate matter atmospheric samples and analysing their metal content. Samples of total particulate matter and of inhalable particles (PM10) were collected in a bus station in the period August 2006-February 2007. The only significant emission source in that location are the buses, fueled by diesel, since light duty vehicles account for about 1-2% of the total vehicular flux and no other activities are developed in the area. Metal levels were determined by ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy). Ca, Mg, Fe and Al were the most abundant compounds, and account for about 50.1%, 24.2%, 6.5% and 18.7%, respectively, of the metal contain. Co, Ni, Cd, Cr and Pb were under their detection limits, except for a few samples. Ca, Mg, Zn and Cu were determined in higher ratios that those currently find in crustal materials indicating that these elements may have important combustion sources and are enriched in the soil.


Author(s):  
L. Lakritz ◽  
E.D. Strange ◽  
D.G. Bailey ◽  
R.L. Stedman

AbstractThe reducing potential of fresh cigarette smoke can be modified by the use of certain oxidants and reductants. The influence of these additives on smoke may be monitored by employing a system which measures changes in EMF on a puff by puff basis. The addition of the oxidant 1,4-benzoquinone to tobacco eliminates the rapid reduction in potential which normally takes place when an untreated cigarette is smoked. The addition of the benzoquinone alters the composition of the smoke by increasing the levels of the total particulate matter and possibly the phenols, while decreasing the nicotine content without affecting the amount of benzo[a]pyrene formed. The addition of sodium thiosulfate to tobacco causes a significant increase in the reducing capacity of cigarette smoke. It also brings about increases in the smoke BAP, phenols and TPM. The level of nicotine in these cigarettes, however, is lowered.


2020 ◽  
Vol 4 (4) ◽  
pp. 59
Author(s):  
Shi Chen ◽  
Hanqing Liu ◽  
Zhiguo Sun ◽  
Hongyong Xie

This paper has established a two-dimensional (2D) mathematical model for the generation, growth, and deposition of cigarette total particulate matter (TPM) in the smoldering state. The model has covered the chemical reactions and mass transfer as well as the mechanism of generation, flow, and condensation of particulate matter inside a burning cigarette. Cigarette smoke was generated by puffing under a constant pressure, and the pressure of the filter outlet was −274 Pa. The peak of the concentration of particulate matter was spatially overlapped with the peaks of pyrolysis and oxidation. Pertaining to the cross section of the cigarette at the same axial position, the peak of the diameter of particulate matter along the radial distribution first appeared in the zone near the edge of the cigarette cross section, and then gradually moved to the center of the cigarette with the cigarette smoke moving away from the combustion cone. The maximum number density of particulate matter calculated by the 2D mathematical model at the same axial position of the cigarette and the corresponding particle diameter, as well as the filtration efficiency of the filter rod, are in good accordance with the experimental data reported in previous studies.


2016 ◽  
Vol 2 (4) ◽  
pp. 00029-2016 ◽  
Author(s):  
Anna Dvorkin-Gheva ◽  
Gilles Vanderstocken ◽  
Ali Önder Yildirim ◽  
Corry-Anke Brandsma ◽  
Ma'en Obeidat ◽  
...  

Exposure of small animals to cigarette smoke is widely used as a model to study the pathogenesis of chronic obstructive pulmonary disease. However, protocols and exposure systems utilised vary substantially and it is unclear how these different systems compare.We analysed the gene expression profile of six publically available murine datasets from different cigarette smoke-exposure systems and related the gene signatures to three clinical cohorts.234 genes significantly regulated by cigarette smoke in at least one model were used to construct a 55-gene network containing 17 clusters. Increasing numbers of differentially regulated clusters were associated with higher total particulate matter concentrations in the different datasets. Low total particulate matter-induced genes mainly related to xenobiotic/detoxification responses, while higher total particulate matter activated immune/inflammatory processes in addition to xenobiotic/detoxification responses. To translate these observations to the clinic, we analysed the regulation of the revealed network in three human cohorts. Similar to mice, we observed marked differences in the number of regulated clusters between the cohorts. These differences were not determined by pack-year.Although none of the experimental models exhibited a complete alignment with any of the human cohorts, some exposure systems showed higher resemblance. Thus, depending on the cohort, clinically observed changes in gene expression may be mirrored more closely by specific cigarette smoke exposure systems. This study emphasises the need for careful validation of animal models.


Author(s):  
WS Schlotzhauer ◽  
RF Severson ◽  
RM Martin

AbstractSucrose esters, principally the 6-O-acetyl-2,3,4-tri-O-(3-methylvaleryl)-a-D-glucopyranosyl-b-D-fructofuran-oside isomer, isolated from the cuticular waxes of green T.I. 165 tobacco leaf, were evaluated as enhancers of 3-methylvaleric acid in the smoke of a tobacco deficient in this important flavor compound. Analyses of the products from semi-micro pyrolyses of sucrose and isolated sucrose esters, over a temperature range of 250°C - 850°C, showed that free sucrose produced 5-hydroxy-methylfurfural as the major component, whereas the ester isolate yielded 3-methylvaleric acid and lesser amounts of isomeric C4 and C5 aliphatic acids. Incorporation of sucrose ester isolate of T.I. 165 leaf into cigarettes prepared from flue-cured NC 2326 tobacco, the smoke of which is essentially devoid of 3-methylvaleric acid, resulted in a total particulate matter with enhanced levels of this compound. The data indicated that addition of approximately 2 mg of sucrose ester isolate per cigarette produced levels of 3-methylvaleric acid in the smoke of NC 2326 cigarettes that were comparable to levels observed in the smoke from cigarettes containing all T.I. 165 or blended Turkish tobacco.


Sign in / Sign up

Export Citation Format

Share Document