scholarly journals Photochemistry of the Organoselenium Compound Ebselen: Direct Photolysis and Reaction with Active Intermediates of Conventional Reactive Species Sensitizers and Quenchers

2020 ◽  
Vol 54 (18) ◽  
pp. 11271-11281
Author(s):  
Mamatha Hopanna ◽  
Lisa Kelly ◽  
Lee Blaney
1967 ◽  
Vol 45 (21) ◽  
pp. 2599-2604 ◽  
Author(s):  
Ivor Brown ◽  
O. E. Edwards

Photolysis of hexanoyl azide in cyclohexane gave 6-methyl-2-piperidone (13%), 5-ethyl-2-pyrrolidone (8%), and N-cyclohexylhexanamide (3%). In contrast, photosensitized decomposition of the azide with acetophenone gave hexanamide (78%), cyclohexene (11%), and dicyclohexyl (11%), but no lactams. It is concluded that the direct photolysis gives singlet acyl nitrene as the reactive species, which yields the δ-lactam preferentially. The importance of proximity in determining the γ- to δ-lactam ratio is emphasized.


Author(s):  
Hassan Tahir ◽  
Umair Khan ◽  
Anwarud Din ◽  
Yu-Ming Chu ◽  
Noor Muhammad

2021 ◽  
Vol 326 ◽  
pp. 129007
Author(s):  
Zahra Nasri ◽  
Giuliana Bruno ◽  
Sander Bekeschus ◽  
Klaus-Dieter Weltmann ◽  
Thomas von Woedtke ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 999 ◽  
Author(s):  
Aranza Denisse Vital-Grappin ◽  
Maria Camila Ariza-Tarazona ◽  
Valeria Montserrat Luna-Hernández ◽  
Juan Francisco Villarreal-Chiu ◽  
Juan Manuel Hernández-López ◽  
...  

Microplastics (MPs) are distributed in a wide range of aquatic and terrestrial ecosystems throughout the planet. They are known to adsorb hazardous substances and can transfer them across the trophic web. To eliminate MPs pollution in an environmentally friendly process, we propose using a photocatalytic process that can easily be implemented in wastewater treatment plants (WWTPs). As photocatalysis involves the formation of reactive species such as holes (h+), electrons (e−), hydroxyl (OH●), and superoxide ion (O2●−) radicals, it is imperative to determine the role of those species in the degradation process to design an effective photocatalytic system. However, for MPs, this information is limited in the literature. Therefore, we present such reactive species’ role in the degradation of high-density polyethylene (HDPE) MPs using C,N-TiO2. Tert-butanol, isopropyl alcohol (IPA), Tiron, and Cu(NO3)2 were confirmed as adequate OH●, h+, O2●− and e− scavengers. These results revealed for the first time that the formation of free OH● through the pathways involving the photogenerated e− plays an essential role in the MPs’ degradation. Furthermore, the degradation behaviors observed when h+ and O2●− were removed from the reaction system suggest that these species can also perform the initiating step of degradation.


2021 ◽  
Vol 165 ◽  
pp. 54
Author(s):  
Patricia de la Cruz-Ojeda ◽  
M. Ángeles Rodríguez-Hernández ◽  
Elena Navarro-Villarán ◽  
Paloma Gallego ◽  
Pavla Staňková ◽  
...  

2021 ◽  
Author(s):  
Pavel Galář ◽  
Josef Khun ◽  
Anna Fučíková ◽  
Kateřina Dohnalová ◽  
Tomáš Popelář ◽  
...  

Non-thermal plasma activated water can be used for cheap, easy and chemicals-free surface modification of nanoparticles, with all the reactive species originating solely in air and water.


2021 ◽  
pp. 129687
Author(s):  
Andrés Suárez-Escobar ◽  
Vicente Rodríguez-González ◽  
Carlos Gallardo-Vega ◽  
Edwin Sarria ◽  
Lorena Clavijo
Keyword(s):  

Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 480
Author(s):  
Valentin Dubois ◽  
Carmen S. D. Rodrigues ◽  
Ana S. P. Alves ◽  
Luis M. Madeira

In the present work, the degradation of p-nitrophenol (PNP) and its mineralization by a UV/Vis-based persulphate activation process was investigated. Firstly, a screening of processes as direct photolysis, persulphate alone and persulphate activated by radiation was performed. The incidence of radiation demonstrated to have an important role in the oxidant activation, allowing to achieve the highest PNP and total organic carbon (TOC) removals. The maximum PNP oxidation (100%) and mineralization (61.6%)—both after 2 h of reaction time—were reached when using T = 70 °C, (S2O82−) = 6.4 g/L and I = 500 W/m2. The influence of radiation type (ultraviolet/visible, visible or simulated solar light) was also evaluated, being found that the source with the highest emission of ultraviolet radiation (UV/visible) allowed to achieve the best oxidation efficiency; however, solar radiation also reached very-good performance. According to quenching experiments, the sulphate radical is key in the activated persulphate oxidation process, but the hydroxyl radical also plays an important role.


Joule ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 757-759
Author(s):  
Sophie H. van Vreeswijk ◽  
Bert M. Weckhuysen
Keyword(s):  

1999 ◽  
Vol 565 ◽  
Author(s):  
Y. Shimogaki ◽  
S. W. Lim ◽  
E. G. Loh ◽  
Y. Nakano ◽  
K. Tada ◽  
...  

AbstractLow dielectric constant F-doped silicon oxide films (SiO:F) can be prepared by adding fluorine source, like as CF4 to the conventional PECVD processes. We could obtain SiO:F films with dielectric constant as low as 2.6 from the reaction mixture of SiH4/N2 O/CF4. The structural changes of the oxides were sensitively detected by Raman spectroscopy. The three-fold ring and network structure of the silicon oxides were selectively decreased by adding fluorine into the film. These structural changes contribute to the decrease ionic polarization of the film, but it was not the major factor for the low dielectric constant. The addition of fluorine was very effective to eliminate the Si-OH in the film and the disappearance of the Si-OH was the key factor to obtain low dielectric constant. A kinetic analysis of the process was also performed to investigate the reaction mechanism. We focused on the effect of gas flow rate, i.e. the residence time of the precursors in the reactor, on growth rate and step coverage of SiO:F films. It revealed that there exists two species to form SiO:F films. One is the reactive species which contributes to increase the growth rate and the other one is the less reactive species which contributes to have uniform step coverage. The same approach was made on the PECVD process to produce low-k C:F films from C2F4, and we found ionic species is the main precursor to form C:F films.


Sign in / Sign up

Export Citation Format

Share Document