Cellular Internalization and Inhibition Capacity of New Anti-Glioma Peptide Conjugates: Physicochemical Characterization and Evaluation on Various Monolayer- and 3D-Spheroid-Based in Vitro Platforms

Author(s):  
Zsuzsa Baranyai ◽  
Beáta Biri-Kovács ◽  
Martin Krátký ◽  
Bálint Szeder ◽  
Márta L. Debreczeni ◽  
...  
2006 ◽  
Vol 505-507 ◽  
pp. 667-672 ◽  
Author(s):  
Chih Hui Yang ◽  
Kuo Chin Lin ◽  
Yu Huai Chang ◽  
Yu Cheng Lin

This paper described and characterized the quantum dots (QDs) with/without the polymeric PLGA applied in MC3T3E-1 delivery. Neat QDs were treated with various solvents, temperatures, exposure time and concentration to evaluate their stability and efficacy. We found that the intensity degree of fluorescence spectra (QDs) in different solvents follows the order: ether > THF > acetone > chloroform > methanol. Importantly, the QDs become inactive after 8-hr dissolution in the solvents of ether, THF or chloroform. According to this result, acetone and methanol are ideal solvents for QDs. The optimum concentration range of QDs in acetone is 5 to 10 mg/mL. We found that no obvious difference of fluorescence intensity was detected in QDs stored respectively at 4 °C, 24 °C and 44 °C (8-hour). When QDs were exposed to UV light (312 nm) for 2 hr, serious decay of fluorescence intensity was observed. In order to extend the application of QDs in medical areas, we encapsulated them in individual biocompatible poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles for in-vitro imaging of endocytosis in MC3T3E-1 cells. We demonstrated that the polymeric PLGA have the ability to permeate the cells for cellular internalization; the endocytotic activity could be enhanced by the polymeric QDs-encapsulated PLGA.


2012 ◽  
Vol 16 (05n06) ◽  
pp. 603-615 ◽  
Author(s):  
Martha Sibrian-Vazquez ◽  
Xiaoke Hu ◽  
Timothy J. Jensen ◽  
M. Graça H. Vicente

Five amphiphilic protoporphyrin IX-peptide conjugates bearing the sequences ATWLPPR, AAhexPQRRSARLSA and cERGDPhe conjugated via the propionic side chains, were synthesized and evaluated in vitro using two cell lines: human carcinoma HEp2 and human leukemia HL-60. All conjugates were found to have low dark- and photo-toxicities in both cell lines, and 3 to 10-fold higher accumulation was observed within HL-60 vs. HEp2 cells, depending on the nature of the peptide sequence. The preferential subcellular sites of localization for all conjugates were found to be the lysosomes in HEp2 cells, and the mitochondria in HL-60 cells, suggesting different mechanisms of cellular internalization.


Author(s):  
Agnieszka Wróbel ◽  
Danuta Drozdowska

Background: Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances on the research of new DHFR inhibitors with potential anticancer activity. Methods: The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationship were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. <p> Results: This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searching for over eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. <p> Conclusion: Thorough physicochemical characterization and biological investigations it is possible to understand structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.


2019 ◽  
Vol 18 (9) ◽  
pp. 1289-1294 ◽  
Author(s):  
Kusum Vats ◽  
Rohit Sharma ◽  
Haladhar D. Sarma ◽  
Drishty Satpati ◽  
Ashutosh Dash

Aims: The urokinase Plasminogen Activator Receptors (uPAR) over-expressed on tumor cells and their invasive microenvironment are clinically significant molecular targets for cancer research. uPARexpressing cancerous lesions can be suitably identified and their progression can be monitored with radiolabeled uPAR targeted imaging probes. Hence this study aimed at preparing and evaluating two 68Ga-labeled AE105 peptide conjugates, 68Ga-NODAGA-AE105 and 68Ga-HBED-CC-AE105 as uPAR PET-probes. Method: The peptide conjugates, HBED-CC-AE105-NH2 and NODAGA-AE105-NH2 were manually synthesized by standard Fmoc solid phase strategy and subsequently radiolabeled with 68Ga eluted from a commercial 68Ge/68Ga generator. In vitro cell studies for the two radiotracers were performed with uPAR positive U87MG cells. Biodistribution studies were carried out in mouse xenografts with the subcutaneously induced U87MG tumor. Results: The two radiotracers, 68Ga-NODAGA-AE105 and 68Ga-HBED-CC-AE105 that were prepared in >95% radiochemical yield and >96% radiochemical purity, exhibited excellent in vitro stability. In vivo evaluation studies revealed higher uptake of 68Ga-HBED-CC-AE105 in U87MG tumor as compared to 68Ga-NODAGAAE105; however, increased lipophilicity of 68Ga-HBED-CC-AE105 resulted in slower clearance from blood and other non-target organs. The uPAR specificity of the two radiotracers was ascertained by significant (p<0.05) reduction in the tumor uptake with a co-injected blocking dose of unlabeled AE-105 peptide. Conclusion: Amongst the two radiotracers studied, the neutral 68Ga-NODAGA-AE105 with more hydrophilic chelator exhibited faster clearance from non-target organs. The conjugation of HBED-CC chelator (less hydrophilic) resulted in negatively charged 68Ga-HBED-CC-AE105 which was observed to have high retention in blood that decreased target to non-target ratios.


Author(s):  
Niketa Chauhan ◽  
Nilay Lakhkar ◽  
Amol Chaudhari

AbstractThe process of bone regeneration in bone grafting procedures is greatly influenced by the physicochemical properties of the bone graft substitute. In this study, porous phosphate glass (PPG) morsels were developed and their physicochemical properties such as degradation, crystallinity, organic content, surface topography, particle size and porosity were evaluated using various analytical methods. The in vitro cytotoxicity of the PPG morsels was assessed and the interaction of the PPG morsels with Dental Pulp Stem Cells (DPSCs) was studied by measuring cell proliferation and cell penetration depth. The cell-material interactions between PPG morsels and a commercially available xenograft (XG) were compared. The PPG morsels were observed to be amorphous, biocompatible and highly porous (porosity = 58.45%). From in vitro experiments, PPG morsels were observed to be non-cytotoxic and showed better cell proliferation. The internal surface of PPG was easily accessible to the cells compared to XG.


2020 ◽  
Vol 4 ◽  
pp. 239784732097975
Author(s):  
Stéphanie Boué ◽  
Didier Goedertier ◽  
Julia Hoeng ◽  
Anita Iskandar ◽  
Arkadiusz K Kuczaj ◽  
...  

E-vapor products (EVP) have become popular alternatives for cigarette smokers who would otherwise continue to smoke. EVP research is challenging and complex, mostly because of the numerous and rapidly evolving technologies and designs as well as the multiplicity of e-liquid flavors and solvents available on the market. There is an urgent need to standardize all stages of EVP assessment, from the production of a reference product to e-vapor generation methods and from physicochemical characterization methods to nonclinical and clinical exposure studies. The objective of this review is to provide a detailed description of selected experimental setups and methods for EVP aerosol generation and collection and exposure systems for their in vitro and in vivo assessment. The focus is on the specificities of the product that constitute challenges and require development of ad hoc assessment frameworks, equipment, and methods. In so doing, this review aims to support further studies, objective evaluation, comparison, and verification of existing evidence, and, ultimately, formulation of standardized methods for testing EVPs.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 792
Author(s):  
Kati Väkeväinen ◽  
Noora Rinkinen ◽  
Roosa-Maria Willman ◽  
Jenni Lappi ◽  
Kaisa Raninen ◽  
...  

Blackcurrant is a healthy, affordable, and traditionally gardened berry that, thus far, has been underused in food applications. From the consumers’ point of view, the acidic taste of blackcurrants is a challenge; therefore, these berries have mainly been utilized for sugary juice production. This research study aimed to develop a frozen vegan blackcurrant product with pleasant sensory properties and potential probiotic function. A candidate probiotic, Lactoplantibacillus plantarum Q823, was used in the manufacturing process. The physicochemical properties, nutritional composition, and consumer preference for the developed product were assessed, as was the viability of L. plantarum Q823 during storage time and in an in vitro gastrointestinal model. Consumers (n = 71) perceived the developed product to be pleasant. L. plantarum Q823 had high viability counts (log colony forming units (cfu) g−1 7.0 ± 0.38) in the final product, although the viability of L. plantarum Q823 during storage time needs to be enhanced to obtain a probiotic product. Thus, within an optimized formulation, blackcurrant berries represent a potential raw material for functional frozen food products.


Author(s):  
Wilza Kímilly Vital de Paiva ◽  
Waleska Rayane Dantas Bezerra de Medeiros ◽  
Cristiane Fernandes de Assis ◽  
Everaldo Silvino dos Santos ◽  
Francisco Caninde de Sousa Júnior

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 803
Author(s):  
Elia Nora Aquino-Bolaños ◽  
Alma Karina Garzón-García ◽  
Jimena Esther Alba-Jiménez ◽  
José Luis Chávez-Servia ◽  
Araceli Minerva Vera-Guzmán ◽  
...  

The green bean is an important crop worldwide, because it is rich in protein, dietary fiber, vitamins, and minerals, as well as bioactive compounds that provide it with important functional properties; however, the composition of many landraces is still unknown. The purpose of this project was to characterize Phaselus vulgaris and coccineus L. landrace green beans on pH, titratable acidity, total soluble solids, total sugars, color parameters, total phenols, monomeric anthocyanins, and in vitro antioxidant activity (DPPH and FRAP). Regarding the content of total sugars, differences were registered between both species, as opposed to results observed in total soluble solids. Color parameters showed higher reddish tones for P. vulgaris landraces, though P. coccineus had a higher total phenolic content, especially the reddish landraces, which correlated directly to a higher antioxidant activity by DPPH and FRAP. In the protein content, the species P. vulgaris registered the highest content. These results could contribute to a greater use and even promote the genetic improvement of the outstanding pods that serve as one of the main food products in rural regions for higher benefits.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4127
Author(s):  
Aline de Cristo Soares Alves ◽  
Franciele Aline Bruinsmann ◽  
Silvia Stanisçuaski Guterres ◽  
Adriana Raffin Pohlmann

Bevacizumab (BCZ) is a recombinant humanized monoclonal antibody against the vascular endothelial growth factor, which is involved in the angiogenesis process. Pathologic angiogenesis is observed in several diseases including ophthalmic disorders and cancer. The multiple administrations of BCZ can cause adverse effects. In this way, the development of controlled release systems for BCZ delivery can promote the modification of drug pharmacokinetics and, consequently, decrease the dose, toxicity, and cost due to improved efficacy. This review highlights BCZ formulated in organic nanoparticles providing an overview of the physicochemical characterization and in vitro and in vivo biological evaluations. Moreover, the main advantages and limitations of the different approaches are discussed. Despite difficulties in working with antibodies, those nanocarriers provided advantages in BCZ protection against degradation guaranteeing bioactivity maintenance.


Sign in / Sign up

Export Citation Format

Share Document