Simultaneous SAXS/WAXS/UV–Vis Study of the Nucleation and Growth of Nanoparticles: A Test of Classical Nucleation Theory

Langmuir ◽  
2015 ◽  
Vol 31 (42) ◽  
pp. 11678-11691 ◽  
Author(s):  
Xuelian Chen ◽  
Jan Schröder ◽  
Stephan Hauschild ◽  
Sabine Rosenfeldt ◽  
Martin Dulle ◽  
...  
2019 ◽  
Vol 61 (12) ◽  
pp. 2412
Author(s):  
Н.М. Корценштейн

Abstract Expressions for the nucleation and growth rates for condensed particles in a heterogeneous reaction of a definite kind have been derived, which allows the kinetics of the formation of the condensed phase in some complex systems to be described. Methods of the classical nucleation theory and an assumption about the reaction development mechanism were used.


1993 ◽  
Vol 321 ◽  
Author(s):  
G. Sundar ◽  
E. A. Kenik ◽  
J. J. Hoyt ◽  
S. Spooner

ABSTRACTNucleation and growth studies were conducted on Al-Zn alloys at several temperatures using transmission electron Microscopy (TEM) with an in-situ furnace. The value of the critical undercooling was established by noting the lowest temperature at which precipitates were no longer observed, following a quench into the two-phase metastable region. These results were compared with the Langer-Schwartz Model of nucleation and growth in which it is predicted that the half-completion time (i.e, the time required for the supersaturation to reach half its initial value) diverges for initial supersaturations which are higher than those predicted by the classical nucleation theory.


2007 ◽  
Vol 539-543 ◽  
pp. 4608-4613 ◽  
Author(s):  
Richard G. Thiessen ◽  
Jilt Sietsma ◽  
I.M. Richardson

This work presents a unique approach for the modelling of the austenitisation of martensite in dual-phase steels within the phase-field method. Driving forces for nucleation and growth are derived from thermodynamic databases. Routines for nucleation are based on a discretisation of the classical nucleation theory. Validation is given via dilatometric experiments.


2001 ◽  
Vol 12 (03) ◽  
pp. 345-359 ◽  
Author(s):  
JÜRN SCHMELZER ◽  
D. P. LANDAU

Monte Carlo simulations of nucleation and growth processes in an Ising-binary alloy model are presented. The evolution of the cluster size distribution function and its characteristic properties (mean radius and concentration of the clusters) has been investigated from the initial quench into the metastable region of the phase diagram until the establishment of the final equilibrium. All classical stages of nucleation and growth could be observed, the stages of steady-state nucleation, independent growth and Ostwald ripening. A quantitative analysis of the simulational results in terms of the theory of regular solutions shows the validity of classical nucleation theory in the region of the phase diagram considered and provides evidence for a size and structure dependent interfacial tension between the two newly formed phases.


Author(s):  
H. P. Singh ◽  
L. E. Murr

This paper reports observations of nucleation and growth characteristics of thin metal films vapor deposited onto heated sodium chloride substrates. An attempt is made to explain the differences in nucleation and growth characteristics on the basis of classical nucleation theory.Thin metal films were prepared by vapor deposition onto heated NaCl (001) substrates in a commercial vacuum unit using a constant evaporation rate of approximately 1000 Å/sec. In the case of discontinuous thin films, approximately 200 Å of carbon was deposited for support. Samples for electron microscopy were prepared by standard techniques and were observed at 125 kV. Figs. 1(a) to (c) show a growth sequence of gold thin films characterized by 1) the formation of random, three dimensional, isolated nuclei at initial deposition, and their growth with further deposition predominantly by surface diffusion; 2) coalescence of these nuclei forming bigger islands; 3) the flattening of islands and formation of network structure : and 4) the filling up of these network structures with further deposition forming a continuous film.


1970 ◽  
Vol 37 (291) ◽  
pp. 741-758 ◽  
Author(s):  
P. S. Rogers

SummaryThe application of classical nucleation theory to the initiation of crystal growth in glasses is discussed. Its application to experimental results obtained for the rate of nucleation in three types of glass, one showing nucleation separately from crystal growth, another showing simultaneous nucleation and growth, and the third showing crystal growth after metastable liquid/liquid phase separation, is then described. Recent work on the kinetics of unmixing in glasses is outlined. The influence of so-called ‘nucleating agents’ in the glasses described appears to be exerted through changes in the anionic structure.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Min Yang ◽  
Lu Wang ◽  
Wentao Yan

AbstractA three-dimensional phase-field model is developed to simulate grain evolutions during powder-bed-fusion (PBF) additive manufacturing, while the physically-informed temperature profile is implemented from a thermal-fluid flow model. The phase-field model incorporates a nucleation model based on classical nucleation theory, as well as the initial grain structures of powder particles and substrate. The grain evolutions during the three-layer three-track PBF process are comprehensively reproduced, including grain nucleation and growth in molten pools, epitaxial growth from powder particles, substrate and previous tracks, grain re-melting and re-growth in overlapping zones, and grain coarsening in heat-affected zones. A validation experiment has been carried out, showing that the simulation results are consistent with the experimental results in the molten pool and grain morphologies. Furthermore, the grain refinement by adding nanoparticles is preliminarily reproduced and compared against the experimental result in literature.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 715
Author(s):  
Miodrag J. Lukić ◽  
Felix Lücke ◽  
Teodora Ilić ◽  
Katharina Petrović ◽  
Denis Gebauer

Nucleation of minerals in the presence of additives is critical for achieving control over the formation of solids in biomineralization processes or during syntheses of advanced hybrid materials. Herein, we investigated the early stages of Fe(III) (oxy)(hydr)oxide formation with/without polyglutamic acid (pGlu) at low driving force for phase separation (pH 2.0 to 3.0). We employed an advanced pH-constant titration assay, X-ray diffraction, thermal analysis with mass spectrometry, Fourier Transform infrared spectroscopy, and scanning electron microscopy. Three stages were observed: initial binding, stabilization of Fe(III) pre-nucleation clusters (PNCs), and phase separation, yielding Fe(III) (oxy)(hydr)oxide. The data suggest that organic–inorganic interactions occurred via binding of olation Fe(III) PNC species. Fourier Transform Infrared Spectroscopy (FTIR) analyses revealed a plausible interaction motif and a conformational adaptation of the polypeptide. The stabilization of the aqueous Fe(III) system against nucleation by pGlu contrasts with the previously reported influence of poly-aspartic acid (pAsp). While this is difficult to explain based on classical nucleation theory, alternative notions such as the so-called PNC pathway provide a possible rationale. Developing a nucleation theory that successfully explains and predicts distinct influences for chemically similar additives like pAsp and pGlu is the Holy Grail toward advancing the knowledge of nucleation, early growth, and structure formation.


Sign in / Sign up

Export Citation Format

Share Document