Biodegradable Mesoporous Organosilica Nanosheets for Chemotherapy/Mild Thermotherapy of Cancer: Fast Internalization, High Cellular Uptake, and High Drug Loading

2020 ◽  
Vol 12 (27) ◽  
pp. 30234-30246
Author(s):  
Lizhu Chen ◽  
Xiangyu Meng ◽  
Mei Liu ◽  
Rongmu Lv ◽  
Bo Cai ◽  
...  
2019 ◽  
Vol 233 ◽  
pp. 230-235 ◽  
Author(s):  
Li-li Lu ◽  
Wen-ya Xiong ◽  
Jun-bin Ma ◽  
Tian-fang Gao ◽  
Si-yuan Peng ◽  
...  

2019 ◽  
Vol 33 (10) ◽  
pp. 1373-1381 ◽  
Author(s):  
Chong Cheng ◽  
Cheng Li ◽  
Xulong Zhu ◽  
Wei Han ◽  
Jianhui Li ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most common and malignant cancers and has no effective therapeutic approaches. Chemotherapeutic drug doxorubicin (DOX) is widely used for HCC therapy, but its application is limited by the clinical toxicity. In the present study, an Fe3O4-ZIF-8 magnetic nano-composite was fabricated and used for DOX delivery for HCC therapy. The morphology, structure and property of Fe3O4-ZIF-8 nano-composites were evaluated by scanning electron microscopy, transmission electron microscopy and N2 adsorption-desorption isotherms studies. The drug release from DOX@Fe3O4-ZIF-8 was measured in pH 7.4 phosphate-buffered saline. The cellular uptake ability of DOX@Fe3O4-ZIF-8 into hepatocarcinoma cell line (MHCC97H) was visualized with a confocal laser scanning microscope. The effects of Fe3O4-ZIF-8, DOX and DOX@Fe3O4-ZIF-8 against MHCC97H cells were evaluated by CCK-8 assay and flow cytometry assay. Fe3O4-ZIF-8 nano-composites were synthesized and used as a nano-carrier for the delivery of DOX. Because of high drug loading property of ZIF-8, 1 mg Fe3O4-ZIF-8 nano-composites loaded 120 μg DOX when DOX@Fe3O4-ZIF-8 was synthesized in 30 mg/mL DOX solution. The cumulative DOX release curve showed a slow and sustained release pattern over time. The results of CCK-8 assay showed that Fe3O4-ZIF-8 was nontoxic to MHCC97H cells, and DOX@Fe3O4-ZIF-8 presented effective inhibiting effect on cell viability of MHCC97H cells. Cellular uptake assay showed that DOX@Fe3O4-ZIF-8 accumulated in both cytoplasm and nuclei. Moreover, because of valid drug accumulation, DOX@Fe3O4-ZIF-8 exhibited a good inducing effect on cell apoptosis of MHCC97H cells. In conclusion, based on the nontoxic and high drug loading capability of Fe3O4-ZIF-8, DOX@Fe3O4-ZIF-8 presented enhanced effects on HCC cells compared to free DOX, indicating its potential for the chemotherapy of HCC.


2019 ◽  
Vol 19 (6) ◽  
pp. 3301-3309
Author(s):  
Xiawen Zheng ◽  
Yuejian Chen ◽  
Zhiming Wang ◽  
Lina Song ◽  
Yu Zhang ◽  
...  

Through self-assembly of nanoparticles into high-order and stable structures of cubic clusters, high drug-loading rubik-like magnetic nano-assemblies (MNAs), possessing folic acid targeting and strong magnetism-enhanced cellular uptake capabilities, were built. In this study, the core of the cubic drug assemblies consisted of four monodisperse superparamagnetic iron oxide nanoparticles coated with layers of oleic acid (Fe3O4@OA), simultaneously encapsulating fluorescein, and Paclitaxol (Flu-MNAs and PTX-MNAs) for imaging and therapeutic applications. To enable preferential tumor cellular uptake by the nanocarriers, the outermost layer of Fe3O4 was functionalized with the new dual-oleic acid-polyethylene glycol-folic acid polymer (FA-PEG-Lys-OA2) as a “shell.” The drug carriers exhibited excellent stability and biocompatibility, and showed high drug loading and excellent magnetic response In Vitro. Furthermore, preliminary evaluations of the drug carriers with Hela cells showed effective cellular targeting capability. In addition, the cubic assemblies enhanced anticancer efficiency for Hela cells compared to bare drugs. Especially, the applied external magnetic field further improved the uptake of the vectors, and thereby enhanced the inhibitory effect. In brief, all these results suggested that cubic assemblies could serve as potential strategies for targeted anticancer therapies.


2017 ◽  
Vol 5 (12) ◽  
pp. 2501-2510 ◽  
Author(s):  
Zhaopei Guo ◽  
Xingzhi Zhou ◽  
Mengze Xu ◽  
Huayu Tian ◽  
Xuesi Chen ◽  
...  

Dimeric CPT (DCPT) could be largely encapsulated in polypeptide micelle RGD-PEG-g-PLL-b-PLeu (DRPPP) with redox-sensitive drug release capability, showing remarkable cellular uptakeviaRGD targeting, enhanced cytotoxicity and cell apoptosis.


2020 ◽  
Vol 21 (13) ◽  
pp. 4677 ◽  
Author(s):  
Yihalem Abebe Alemayehu ◽  
Wen-Lu Fan ◽  
Fasih Bintang Ilhami ◽  
Chih-Wei Chiu ◽  
Duu-Jong Lee ◽  
...  

The development of stimuli-responsive supramolecular micelles with high drug-loading contents that specifically induce significant levels of apoptosis in cancer cells remains challenging. Herein, we report photosensitive uracil-functionalized supramolecular micelles that spontaneously form via self-assembly in aqueous solution, exhibit sensitive photo-responsive behavior, and effectively encapsulate anticancer drugs at high drug-loading contents. Cellular uptake analysis and double-staining flow cytometric assays confirmed the presence of photo-dimerized uracil groups within the irradiated micelles remarkably enhanced endocytic uptake of the micelles by cancer cells and subsequently led to higher levels of apoptotic cell death, and thus improved the therapeutic effect in vitro. Thus, photo-dimerized uracil-functionalized supramolecular micelles may potentially represent an intelligent nanovehicle to improve the safety, efficacy, and applicability of cancer chemotherapy, and could also enable the development of nucleobase-based supramolecular micelles for multifunctional biomaterials and novel biomedical applications.


2018 ◽  
Author(s):  
Robert Luxenhofer ◽  
Michael M Lübtow ◽  
Lukas Hahn ◽  
Thomas Lorson ◽  
Rainer Schobert

Many natural compounds with interesting biomedical properties share one physicochemical property, namely a low water solubility. Polymer micelles are, among others, a popular means to solubilize hydrophobic compounds. The specific molecular interactions between the polymers and the hydrophobic drugs are diverse and recently it has been discussed that macromolecular engineering can be used to optimize drug loaded micelles. Specifically, π-π stacking between small molecules and polymers has been discussed as an important interaction that can be employed to increase drug loading and formulation stability. Here, we test this hypothesis using four different polymer amphiphiles with varying aromatic content and various natural products that also contain different relative amounts of aromatic moieties. While in the case of paclitaxel, having the lowest relative content of aromatic moieties, the drug loading decreases with increasing relative aromatic amount in the polymer, the drug loading of curcumin, having a much higher relative aromatic content, is increased. Interestingly, the loading using schizandrin A, a dibenzo[a,c]cyclooctadiene lignan with intermediate relative aromatic content is not influenced significantly by the aromatic content of the polymers employed. The very high drug loading, long term stability, the ability to form stable highly loaded binary coformulations in different drug combinations, small sized formulations and amorphous structures in all cases, corroborate earlier reports that poly(2-oxazoline) based micelles exhibit an extraordinarily high drug loading and are promising candidates for further biomedical applications. The presented results underline that the interaction between the polymers and the incorporated small molecules are complex and must be investigated in every specific case.<br>


2021 ◽  
Vol 266 ◽  
pp. 118122
Author(s):  
Tianxing Chen ◽  
Yuan Yang ◽  
Hui Peng ◽  
Andrew K. Whittaker ◽  
Yao Li ◽  
...  

2021 ◽  
Vol 147 ◽  
pp. 110286
Author(s):  
Christian E. Ziegler ◽  
Moritz Graf ◽  
Sebastian Beck ◽  
Achim M. Goepferich

Sign in / Sign up

Export Citation Format

Share Document