Fine-Tuning Window Apertures in ZIF-8/67 Frameworks by Metal Ions and Temperature for High-Efficiency Molecular Sieving of Xylenes

Author(s):  
Daniil M. Polyukhov ◽  
Artem S. Poryvaev ◽  
Aleksandr S. Sukhikh ◽  
Sergey A. Gromilov ◽  
Matvey V. Fedin
2020 ◽  
pp. 15-20
Author(s):  
Ersin Yucel ◽  
Mine Yucel

In this study, the usage of the peppermint (Mentha piperita) for extracting the metal ions [Mg (II), Cr (II), Ni (II), Cu (II), Zn (II), Cd (II), Pb (II)] that exist at water was investigated. In order to analyze the stability properties, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms were used at removing the metal ions and the highest correlation coefficients (R2) were obtained at Langmuir isotherm. Therefore, it is seen that the Langmuir model is more proper than the Freundlich model. However, it was found that the correlation coefficients of removing Ni and Cd is higher at Freundlich model than Langmuir and low at Dubinin-Radushkevich isotherm. It is established that the biosorption amount increase depends on the increase of biosorbent and it can be achieved high efficiency (95%) even with small amount (0.6 mg, peppermint extract) at lead ions. It is also determined that the peppermint extracted that is used at this study shows high biosorption capacity for metal ions and can be used for immobilization of metals from polluted areas.


2021 ◽  
pp. 2103193
Author(s):  
Jianchao Jia ◽  
Qiri Huang ◽  
Tao Jia ◽  
Kai Zhang ◽  
Jie Zhang ◽  
...  

2017 ◽  
Vol 19 (36) ◽  
pp. 25105-25114 ◽  
Author(s):  
Akira Oda ◽  
Takahiro Ohkubo ◽  
Takashi Yumura ◽  
Hisayoshi Kobayashi ◽  
Yasushige Kuroda

Understanding the exact position and the detailed role of the Al array in zeolites is essential for elucidating the origin of unique properties and for designing zeolite materials with high efficiency in catalytic and adsorption processes. In this work, we advanced pivotal roles of Lewis base–metal ion bifunctionality caused by Al atoms arrayed circumferentially in the MFI-zeolite pores.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Fillip Port ◽  
Claudia Strein ◽  
Mona Stricker ◽  
Benedikt Rauscher ◽  
Florian Heigwer ◽  
...  

Genetic screens are powerful tools for the functional annotation of genomes. In the context of multicellular organisms, interrogation of gene function is greatly facilitated by methods that allow spatial and temporal control of gene abrogation. Here, we describe a large-scale transgenic short guide (sg) RNA library for efficient CRISPR-based disruption of specific target genes in a constitutive or conditional manner. The library consists currently of more than 2600 plasmids and 1700 fly lines with a focus on targeting kinases, phosphatases and transcription factors, each expressing two sgRNAs under control of the Gal4/UAS system. We show that conditional CRISPR mutagenesis is robust across many target genes and can be efficiently employed in various somatic tissues, as well as the germline. In order to prevent artefacts commonly associated with excessive amounts of Cas9 protein, we have developed a series of novel UAS-Cas9 transgenes, which allow fine tuning of Cas9 expression to achieve high gene editing activity without detectable toxicity. Functional assays, as well as direct sequencing of genomic sgRNA target sites, indicates that the vast majority of transgenic sgRNA lines mediate efficient gene disruption. Furthermore, we conducted the so far largest fully transgenic CRISPR screen in any metazoan organism, which further supported the high efficiency and accuracy of our library and revealed many so far uncharacterized genes essential for development.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3624 ◽  
Author(s):  
Inga Zinicovscaia ◽  
Nikita Yushin ◽  
Daler Abdusamadzoda ◽  
Dmitrii Grozdov ◽  
Margarita Shvetsova

The performance of the brewer’s yeast Saccharomyces cerevisiae to remove metal ions from four batch systems, namely Zn(II), Zn(II)-Sr(II)-Cu(II), Zn(II)-Ni(II)-Cu(II), and Zn(II)-Sr(II)-Cu(II)-Ba(II), and one real effluent was evaluated. Yeast biosorption capacity under different pH, temperature, initial zinc concentration, and contact time was investigated. The optimal pH for removal of metal ions present in the analyzed solution (Zn, Cu, Ni, Sr, and Ba) varied from 3.0 to 6.0. The biosorption process for zinc ions in all systems obeys Langmuir adsorption isotherm, and, in some cases, the Freundlich model was applicable as well. The kinetics of metal ions biosorption was described by pseudo-first-order, pseudo-second-order, and Elovich models. Thermodynamic calculations showed that metal biosorption was a spontaneous process. The two-stage sequential scheme of zinc ions removal from real effluent by the addition of different dosages of new sorbent allowed us to achieve a high efficiency of Zn(II) ions removal from the effluent. FTIR revealed that OH, C=C, C=O, C–H, C–N, and NH groups were the main biosorption sites for metal ions.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jianye Zhou ◽  
Xinyu Yang ◽  
Lin Zhang ◽  
Siyu Shao ◽  
Gangying Bian

To realize high-precision and high-efficiency machine fault diagnosis, a novel deep learning framework that combines transfer learning and transposed convolution is proposed. Compared with existing methods, this method has faster training speed, fewer training samples per time, and higher accuracy. First, the raw data collected by multiple sensors are combined into a graph and normalized to facilitate model training. Next, the transposed convolution is utilized to expand the image resolution, and then the images are treated as the input of the transfer learning model for training and fine-tuning. The proposed method adopts 512 time series to conduct experiments on two main mechanical datasets of bearings and gears in the variable-speed gearbox, which verifies the effectiveness and versatility of the method. We have obtained advanced results on both datasets of the gearbox dataset. The dataset shows that the test accuracy is 99.99%, achieving a significant improvement from 98.07% to 99.99%.


2012 ◽  
Vol 21 (8) ◽  
pp. 083303 ◽  
Author(s):  
Jian-Ning Yu ◽  
Min-Yan Zhang ◽  
Chong Li ◽  
Yu-Zhu Shang ◽  
Yan-Fang Lü ◽  
...  

2019 ◽  
Author(s):  
Fillip Port ◽  
Claudia Strein ◽  
Mona Stricker ◽  
Benedikt Rauscher ◽  
Florian Heigwer ◽  
...  

SUMMARYGenetic screens are powerful tools for the functional annotation of genomes. In the context of multicellular organisms, interrogation of gene function is greatly facilitated by methods that allow spatial and temporal control of gene abrogation. Here, we describe a large-scale transgenic short guide (sg) RNA library for efficient CRISPR-based disruption of specific target genes in a constitutive or conditional manner. The library consists currently of more than 2600 plasmids and 1600 fly lines with a focus on targeting kinases, phosphatases and transcription factors, each expressing two sgRNAs under control of the Gal4/UAS system. We show that conditional CRISPR mutagenesis is robust across many target genes and can be efficiently employed in various somatic tissues, as well as the germline. In order to prevent artefacts commonly associated with excessive amounts of Cas9 protein, we have developed a series of novel UAS-Cas9 transgenes, which allow fine tuning of Cas9 expression to achieve high gene editing activity without detectable toxicity. Functional assays, as well as direct sequencing of genomic sgRNA target sites, indicates that the vast majority of transgenic sgRNA lines mediate efficient gene disruption. Furthermore, we conducted the so far largest fully transgenic CRISPR screen in any metazoan organism, which further supported the high efficiency and accuracy of our library and revealed many so far uncharacterized genes essential for development.


Author(s):  
Dr. Mostafa G. Fadl ◽  
Zenat Kamel Mohamed

Bacteria a Microscopic organisms are the most inexhaustible and flexible of microorganisms and constitute a huge division of the whole living earthly biomass, certain microorganisms were found to amass metallic components at a high limit Was Known as Bacterial Bio-sorption Due to their little size, capacity to become under controlled conditions, and their Accommodation to an extensive variety of ecological situations; Potent metal bio-sorbents among microorganisms, at low pH esteems, cell divider ligands are protonated and contend essentially with metals for official. With expanding pH, more ligands, such as amino and carboxyl groups, could be exposed, leading to attraction between these negative charges and the metals, and consequently increment bio-sorption onto the cell surface. Starting with Isolation and identification of heavy metal-resistant bacteria from rock Ore. Studying Factors Affecting Uranium Bio-sorption, Optimization of bacterial growth conditions and optimum for metal uptake by free and immobilized bacterial cells and Desorption ratio of uranium ions adsorbed by Coli. /alginate, All this evidence suggest that functions groups Represented in our study are responsible for metal uptake in our bacterial biomass beside change in peaks position which assigned for it's groups confirm bio-sorption of metal ions from waste due to ions charge interaction comparing with immobilized we found increase in no of binding sites indicate that immobilized bacterial have high efficiency for metal up take which also change in peaks position which assigned for its groups confirm bio-sorption of metal ions from waste due to ions charge interaction, Where the high bio-sorption yield obtained by bacteria, the Uranium & heavy metal bioremediation process expects microorganisms to be joined to a strong surface.


Sign in / Sign up

Export Citation Format

Share Document