Fingerprint-Inspired Strain Sensor with Balanced Sensitivity and Strain Range Using Laser-Induced Graphene

Author(s):  
Wentao Wang ◽  
Longsheng Lu ◽  
Zehong Li ◽  
Lihui Lin ◽  
Zhanbo Liang ◽  
...  
Keyword(s):  
2021 ◽  
Vol 9 (15) ◽  
pp. 9634-9643
Author(s):  
Zhenming Chu ◽  
Weicheng Jiao ◽  
Yifan Huang ◽  
Yongting Zheng ◽  
Rongguo Wang ◽  
...  

A graphene-based gradient wrinkle strain sensor with a broad range and ultra-high sensitivity was fabricated by a simple pre-stretching method. It can be applied to the detection of full-range human body motions.


Author(s):  
Mohammed Al-Rubaiai ◽  
Ryohei Tsuruta ◽  
Taewoo Nam ◽  
Umesh Gandhi ◽  
Xiaobo Tan

Abstract Inflatable structures provide significant volume and weight savings for future space and soft robotic applications. Structural health monitoring (SHM) of these structures is essential to ensuring safe operation, providing early warnings of damage, and measuring structural changes over time. In this paper, we propose the design of a single flexible strain sensor for distributed monitoring of an inflatable tube, in particular, the detection and localization of a kink should that occur. Several commercially available conductive materials, including 3D-printing filaments, conductive paint, and conductive fabrics are explored for their strain-sensing performance, where the resistance change under uniaxial tension is measured, and the corresponding gauge factor (GF) is characterized. Flexible strain sensors are then fabricated and integrated with an inflatable structure fabric using screen-printing or 3D-printing techniques, depending on the nature of the raw conductive material. Among the tested materials, the conductive paint shows the highest stability, with GF of 15 and working strain range of 2.28%. Finally, the geometry of the sensor is designed to enable distributed monitoring of an inflatable tube. In particular, for a given deformation magnitude, the sensor output shows a monotonic relationship with the location where the deformation is applied, thus enabling the monitoring of the entire tube with a single sensor.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 889
Author(s):  
Lu Liu ◽  
Libo Wang ◽  
Xuqing Liu ◽  
Wenfeng Yuan ◽  
Mengmeng Yuan ◽  
...  

Flexible and comfortable wearable electronics are as a second skin for humans as they can collect the physiology of humans and show great application in health and fitness monitoring. MXene Ti3C2Tx have been used in flexible electronic devices for their unique properties such as high conductivity, excellent mechanical performance, flexibility, and good hydrophilicity, but less research has focused on MXene-based cotton fabric strain sensors. In this work, a high-performance wearable strain sensor composed of two-dimensional (2D) MXene d-Ti3C2Tx nanomaterials and cotton fabric is reported. Cotton fabrics were selected as substrate as they are comfortable textiles. As the active material in the sensor, MXene d-Ti3C2Tx exhibited an excellent conductivity and hydrophilicity and adhered well to the fabric fibers by electrostatic adsorption. The gauge factor of the MXene@cotton fabric strain sensor reached up to 4.11 within the strain range of 15%. Meanwhile, the sensor possessed high durability (>500 cycles) and a low strain detection limit of 0.3%. Finally, the encapsulated strain sensor was used to detect subtle or large body movements and exhibited a rapid response. This study shows that the MXene@cotton fabric strain sensor reported here have great potential for use in flexible, comfortable, and wearable devices for health monitoring and motion detection.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2531
Author(s):  
Yelin Ko ◽  
Ji-seon Kim ◽  
Chi Cuong Vu ◽  
Jooyong Kim

Flexible strain sensors are receiving a great deal of interest owing to their prospective applications in monitoring various human activities. Among various efforts to enhance the sensitivity of strain sensors, pre-crack generation has been well explored for elastic polymers but rarely on textile substrates. Herein, a highly sensitive textile-based strain sensor was fabricated via a dip-coat-stretch approach: a polyester woven elastic band was dipped into ink containing single-walled carbon nanotubes coated with silver paste and pre-stretched to generate prebuilt cracks on the surface. Our sensor demonstrated outstanding sensitivity (a gauge factor of up to 3550 within a strain range of 1.5–5%), high stability and durability, and low hysteresis. The high performance of this sensor is attributable to the excellent elasticity and woven structure of the fabric substrate, effectively generating and propagating the prebuilt cracks. The strain sensor integrated into firefighting gloves detected detailed finger angles and cyclic finger motions, demonstrating its capability for subtle human motion monitoring. It is also noteworthy that this novel strategy is a very quick, straightforward, and scalable method of fabricating strain sensors, which is extremely beneficial for practical applications.


2013 ◽  
Vol 645 ◽  
pp. 334-337
Author(s):  
Zhen Li Xue ◽  
Xiao Yong Chen ◽  
Zhou Chun Cai ◽  
Chuan Li ◽  
Zhen Gang Zhao

Under the influence of ice coating and other natural factors, Power tower cross arm will deform, damage and even fracture with the increasing stress. On the power tower of Yanjin converting station, four fiber Bragg grating strain sensors were installed. By changing the internal force that main material of the cross arm suffered, deflection change of each main material occurred, resulting in fiber Bragg grating wavelength of the fiber Bragg grating strain sensors which on the surface of the cross arm shifting. During the 479 days monitoring, the # 2 sensor daily mean strain range is the largest with the value of 1700.98, while the 3 # sensors have the smallest value of 1122.91. On the July 20th 2011, daily mean strain of the 2# strain sensor located in the insulation cross arm reached the maximum value 382.01, while on the February 19th 2011, that of the 4# sensor achieved the minimum value -1477.75.On the February 19th 2011, both local wind direction and speed had the biggest changes through the testing process, which indicates that the cable sweeping wind is the mainly reason to cause the power tower cross arm deformation.


2021 ◽  
Author(s):  
Lu Liu ◽  
Libo Wang ◽  
Xuqing Liu ◽  
Wenfeng Yuan ◽  
Mengmeng Yuan ◽  
...  

Abstract Although 2D nanomaterials such as MXene Ti3C2Tx have been used in flexible electronic devices for their unique properties such as high conductivity, excellent mechanical performance, flexibility, and good hydrophilicity, less research has focused on of MXene-based cotton fabric strain sensors. Moreover, fabrication of wearable strain sensors with a low cost, high sensitivity, good biocompatibility, and broad sensing range is still a challenge. In this work, a high-performance wearable strain sensor composed of 2D MXene d-Ti3C2Tx nanomaterials and cotton fabric is reported. As the active material in the sensor, MXene d-Ti3C2Tx exhibited an excellent conductivity and hydrophilicity and adhered well to the fabric fibers by electrostatic adsorption. Due to the unique structure of the fabric substrate and the properties of MXene sheets, the fabricated pressure sensor achieved a high sensitivity. The gauge factor of the MXene@cotton fabric strain sensor reached up to 4.11 within the strain range of 15 %. Meanwhile, the sensor possessed high durability (>500 cycles) and a low strain detection limit of 0.3%. Finally, the encapsulated strain sensor was used to detect subtle or large body movements and exhibited a rapid response. This study shows that the MXene@cotton fabric strain sensor reported here have great potential for use in flexible, comfortable, and wearable devices for health monitoring and motion detection.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2834 ◽  
Author(s):  
Hyunsuk Jung ◽  
Chan Park ◽  
Hyunwoo Lee ◽  
Seonguk Hong ◽  
Hyonguk Kim ◽  
...  

Studies on wearable sensors that monitor various movements by attaching them to a body have received considerable attention. Crack-based strain sensors are more sensitive than other sensors. Owing to their high sensitivity, these sensors have been investigated for measuring minute deformations occurring on the skin, such as pulse. However, existing studies have limited sensitivity at low strain range and nonlinearity that renders any calibration process complex and difficult. In this study, we propose a pre-strain and sensor-extending process to improve the sensitivity and linearity of the sensor. By using these pre-strain and sensor-extending processes, we were able to control the morphology and alignment of cracks and regulate the sensitivity and linearity of the sensor. Even if the sensor was fabricated in the same manner, the sensor that involved the pre-strain and extending processes had a sensitivity 100 times greater than normal sensors. Thus, our crack-based strain sensor had high sensitivity (gauge factor > 5000, gauge factor (GF = (△R/R0)/ε), linearity, and low hysteresis at low strain (<1% strain). Given its high sensing performance, the sensor can be used to measure micro-deformation, such as pulse wave and voice.


Nanoscale ◽  
2018 ◽  
Vol 10 (24) ◽  
pp. 11524-11530 ◽  
Author(s):  
Yi-Fan Yang ◽  
Lu-Qi Tao ◽  
Yu Pang ◽  
He Tian ◽  
Zhen-Yi Ju ◽  
...  
Keyword(s):  

An ultrasensitive strain sensor with a wide strain range based on graphene armour scales is demonstrated in this paper.


NANO ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. 1850126 ◽  
Author(s):  
Bailiang Chen ◽  
Ying Liu ◽  
Guishan Wang ◽  
Xianzhe Cheng ◽  
Guanjun Liu ◽  
...  

Flexible strain sensors, as the core member of the family of smart electronic devices, along with reasonable sensing range and sensitivity plus low cost, have rose a huge consumer market and also immense interests in fundamental studies and technological applications, especially in the field of biomimetic robots movement detection and human health condition monitoring. In this paper, we propose a new flexible strain sensor based on thick CVD graphene film and its low-cost fabrication strategy by using the commercial adhesive tape as flexible substrate. The tensile tests in a strain range of [Formula: see text]30% were implemented, and a gage factor of 30 was achieved under high strain condition. The optical microscopic observation with different strains showed the evolution of cracks in graphene film. Together with commonly used platelet overlap theory and percolation network theory for sensor resistance modeling, we established an overlap destructive resistance model to analyze the sensing mechanism of our devices, which fitted the experimental data very well. The finding of difference of fitting parameters in small and large strain ranges revealed the multiple stage feature of graphene crack evolution. The resistance fallback phenomenon due to the viscoelasticity of flexible substrate was analyzed. Our flexible strain sensor with low cost and simple fabrication process exhibits great potential for commercial applications.


Author(s):  
Mohammed Al-Rubaiai ◽  
Ryohei Tsuruta ◽  
Umesh Gandhi ◽  
Chuan Wang ◽  
Xiaobo Tan

Stretchable strain sensors with large strain range, high sensitivity, and excellent reliability are of great interest for applications in soft robotics, wearable devices, and structure-monitoring systems. Unlike conventional template lithography-based approaches, 3D-printing can be used to fabricate complex devices in a simple and cost-effective manner. In this paper, we report 3D-printed stretchable strain sensors that embeds a flexible conductive composite material in a hyper-plastic substrate. Three commercially available conductive filaments are explored, among which the conductive thermoplastic polyurethane (ETPU) shows the highest sensitivity (gauge factor of 5), with a working strain range of 0%–20%. The ETPU strain sensor exhibits an interesting behavior where the conductivity increases with the strain. In addition, an experiment for measuring the wind speed is conducted inside a wind tunnel, where the ETPU sensor shows sensitivity to the wind speed beyond 5.6 m/s.


Sign in / Sign up

Export Citation Format

Share Document