Targeted Delivery of 5-Aminolevulinic Acid by Multifunctional Hollow Mesoporous Silica Nanoparticles for Photodynamic Skin Cancer Therapy

2015 ◽  
Vol 7 (20) ◽  
pp. 10671-10676 ◽  
Author(s):  
Xing Ma ◽  
Qiuyu Qu ◽  
Yanli Zhao
2020 ◽  
Vol 14 (4) ◽  
pp. 373-386
Author(s):  
Yimin Zhou ◽  
Qingni Xu ◽  
Chaohua Li ◽  
Yuqi Chen ◽  
Yueli Zhang ◽  
...  

2015 ◽  
Vol 3 (29) ◽  
pp. 6094-6104 ◽  
Author(s):  
Xiaodong She ◽  
Lijue Chen ◽  
Leonora Velleman ◽  
Chengpeng Li ◽  
Canzhong He ◽  
...  

ToF-SIMS was successfully applied to characterize and quantify the EGF grafted on hollow mesoporous silica nanoparticles.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 527 ◽  
Author(s):  
Sugata Barui ◽  
Valentina Cauda

The presence of leaky vasculature and the lack of lymphatic drainage of small structures by the solid tumors formulate nanoparticles as promising delivery vehicles in cancer therapy. In particular, among various nanoparticles, the mesoporous silica nanoparticles (MSN) exhibit numerous outstanding features, including mechanical thermal and chemical stability, huge surface area and ordered porous interior to store different anti-cancer therapeutics with high loading capacity and tunable release mechanisms. Furthermore, one can easily decorate the surface of MSN by attaching ligands for active targeting specifically to the cancer region exploiting overexpressed receptors. The controlled release of drugs to the disease site without any leakage to healthy tissues can be achieved by employing environment responsive gatekeepers for the end-capping of MSN. To achieve precise cancer chemotherapy, the most desired delivery system should possess high loading efficiency, site-specificity and capacity of controlled release. In this review we will focus on multimodal decorations of MSN, which is the most demanding ongoing approach related to MSN application in cancer therapy. Herein, we will report about the recently tried efforts for multimodal modifications of MSN, exploiting both the active targeting and stimuli responsive behavior simultaneously, along with individual targeted delivery and stimuli responsive cancer therapy using MSN.


2018 ◽  
Vol 6 (28) ◽  
pp. 4618-4629 ◽  
Author(s):  
Lin Huang ◽  
Jia Liu ◽  
Fan Gao ◽  
Qian Cheng ◽  
Bo Lu ◽  
...  

A novel enzyme and redox dual-responsive targeted drug delivery system based on hollow mesoporous silica nanoparticles was developed for cancer therapy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 844
Author(s):  
Thorben Fischer ◽  
Inga Winter ◽  
Robert Drumm ◽  
Marc Schneider

The transport of macromolecular drugs such as oligonucleotides into the lungs has become increasingly relevant in recent years due to their high potency. However, the chemical structure of this group of drugs poses a hurdle to their delivery, caused by the negative charge, membrane impermeability and instability. For example, siRNA to reduce tumour necrosis factor alpha (TNF-α) secretion to reduce inflammatory signals has been successfully delivered by inhalation. In order to increase the effect of the treatment, a co-transport of another anti-inflammatory ingredient was applied. Combining curcumin-loaded mesoporous silica nanoparticles in nanostructured cylindrical microparticles stabilized by the layer-by-layer technique using polyanionic siRNA against TNF-α was used for demonstration. This system showed aerodynamic properties suited for lung deposition (mass median aerodynamic diameter of 2.85 ± 0.44 µm). Furthermore, these inhalable carriers showed no acute in vitro toxicity tested in both alveolar epithelial cells and macrophages up to 48 h incubation. Ultimately, TNF-α release was significantly reduced by the particles, showing an improved activity co-delivering both drugs using such a drug-delivery system for specific inhibition of TNF-α in the lungs.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Thashini Moodley ◽  
Moganavelli Singh

With increasing incidence and mortality rates, cancer remains one of the most devastating global non-communicable diseases. Restricted dosages and decreased bioavailability, often results in lower therapeutic outcomes, triggering the development of resistance to conventionally used drug/gene therapeutics. The development of novel therapeutic strategies using multimodal nanotechnology to enhance specificity, increase bioavailability and biostability of therapeutics with favorable outcomes is critical. Gated vectors that respond to endogenous or exogenous stimuli, and promote targeted tumor delivery without prematurely cargo loss are ideal. Mesoporous silica nanoparticles (MSNs) are effective delivery systems for a variety of therapeutic agents in cancer therapy. MSNs possess a rigid framework and large surface area that can incorporate supramolecular constructs and varying metal species that allow for stimuli-responsive controlled release functions. Its high interior loading capacity can incorporate combination drug/gene therapeutic agents, conferring increased bioavailability and biostability of the therapeutic cargo. Significant advances in the engineering of MSNs structural and physiochemical characteristics have since seen the development of nanodevices with promising in vivo potential. In this review, current trends of multimodal MSNs being developed and their use in stimuli-responsive passive and active targeting in cancer therapy will be discussed, focusing on light, redox, pH, and temperature stimuli.


2015 ◽  
Vol 3 (31) ◽  
pp. 6480-6489 ◽  
Author(s):  
Haijiao Zhang ◽  
Huijuan Xu ◽  
Minghong Wu ◽  
Yufang Zhong ◽  
Donghai Wang ◽  
...  

Novel hollow mesoporous silica nanoparticles (HMSNs) with rough surfaces have been successfully prepared using a facile soft–hard template route.


Sign in / Sign up

Export Citation Format

Share Document