In Situ Assembly of Hydrophilic and Hydrophobic Nanoparticles at Oil–Water Interfaces as a Versatile Strategy To Form Stable Emulsions

2015 ◽  
Vol 7 (38) ◽  
pp. 21010-21014 ◽  
Author(s):  
Amitesh Saha ◽  
Vijay T. John ◽  
Arijit Bose
Keyword(s):  
2018 ◽  
Vol 554 ◽  
pp. 16-25 ◽  
Author(s):  
Dongliang Qian ◽  
Dongyun Chen ◽  
Najun Li ◽  
Qingfeng Xu ◽  
Hua Li ◽  
...  

2021 ◽  
Author(s):  
Cailin Liu ◽  
Li Yu ◽  
Yue Fan ◽  
Chang Li ◽  
Xianyan Ren ◽  
...  

Abstract In the oil-water separation, the difficulty to recover and low hydrophobicity are key limitation factors for practical applications. In this paper, we design Cobalt ferrite hybird Polystyrene divinylbenzene microspheres (CoFe2O4/SDB), which were conducted through in-situ suspension copolymerization. The CoFe2O4 is prepared by low heat solid phase sol-gel method. It had been found that the CoFe2O4/SDB have a spherical structure, good adsorption behavior, highly hydrophobicity and even superhydrophobicity. The adsorption capacity of CoFe2O4/SDB composites could absorb kerosene up to 6 times of its own weight. Interestingly, kerosene can be easily separated from the surface of CoFe2O4/SDB particles with ultrasonic operation. CoFe2O4/SDB particles can still maintain good hydrophobicity and adsorption capacity of kerosene after 11 cycles after drying. With in situ polymerization of St、DVB and CoFe2O4, CoFe2O4/SDB as a promising absorbent of kerosene which has great potential in application of oil-water separation.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jixi Zhang ◽  
Ligui Zhang ◽  
Xiao Gong

In this work, we prepare a PDMS-SiO2-PDA@fabric with high water contact angle (WCA=155o). Combining dopamine self-polymerization and sol-gel method, SiO2 is in situ grown on a PDA-modified fabric surface to...


2021 ◽  
Author(s):  
Abdelhak Ladmia ◽  
Dr. Younes bin Darak Al Blooshi ◽  
Abdullah Alobedli ◽  
Dragoljub Zivanov ◽  
Myrat Kuliyev ◽  
...  

Abstract The expected profiles of the water produced from the mature ADNOC fields in the coming years imply an important increase and the OPEX of the produced and injected water will increase considerably. This requires in-situ water separation and reinjection. The objective of in-situ fluid separation is to reduce the cost of handling produced water and to extend the well natural flow performance resulting in increased and accelerated production. The current practice of handling produced water is inexpensive in the short term, but it can affect the operating cost and the recovery in the long term as the expected water cut for the next 10-15 years is forecasted to incease significantly. A new water management tool called downhole separation technology was developed. It separates oil and & gas from associated water inside the wellbore to be reinjected back into the disposal wells. The Downhole Oil Water Separation (DHOWS) Technology is one of the key development strategies that can reduce considerable amounts of produced water, improve hydrocarbon recovery, and minimize field development cost by eliminating surface water treatment and handling costs. The main benefits of DHOWS include acceleration of oil offtake, reduction of production cost, lessening produced water volumes, and improved utilization of surface facilities. In effect, DHOWS technologies require specific design criteria to meet the objectives of the well. Therefore, multi--discipline input data are needed to install an effective DHOWS with a robust design that economically outperforms and boosts oil and/or gas productions. This paper describes the fundamental criteria and workflow for selecting the most suitable DHOWS design for new and sidetracked wells to deliver ADNOC production mandates in a cost-effective manner while meeting completion requirements and adhering to reservoir management guidelines.


Author(s):  
Yujie Li ◽  
Jie Wang ◽  
Shijie Wang ◽  
Di Li ◽  
Shan Song ◽  
...  

The immiscible two-phase flow behaves nonlinearly, and it is a challenging task to control and stabilize the liquid-liquid interface. Parallel flow forms under a proper balance between the driving force, the friction resistance, and the interfacial tension. The liquid-solid interaction as well as the liquid-liquid interaction plays an important role in manipulating the liquid-liquid interface. With vacuum-driven flow, long and stable parallel flow is possible to be obtained in oil-water systems and can be used for fabricating micro- and nanomaterials. Ultra-small Cu nanoparticles of 4~10 nm were synthesized continuously through chemical reactions taking place on the interface. This makes it possible for in situ synthesis of conductive nanoink avoiding oxidation. Well-controlled interface reactions can also be used to produce ultra-long sub-micro Cu wires up to 10 mm at room temperature. This method provided new and simple additive fabrication methods for making integrated microfluidic devices.


2019 ◽  
Vol 7 (14) ◽  
pp. 8491-8502 ◽  
Author(s):  
Atian Xie ◽  
Jiuyun Cui ◽  
Jin Yang ◽  
Yangyang Chen ◽  
Jiangdong Dai ◽  
...  

Photo-Fenton self-cleaning membranes have been developed by TA-Fe(iii) complex assembly, followed by the in situ mineralization of β-FeOOH for efficient oil/water emulsions separation.


Sign in / Sign up

Export Citation Format

Share Document