Fluorinated Carbon Nanotube/Nanofibrillated Cellulose Composite Film with Enhanced Toughness, Superior Thermal Conductivity, and Electrical Insulation

2018 ◽  
Vol 10 (40) ◽  
pp. 34311-34321 ◽  
Author(s):  
Xiongwei Wang ◽  
Peiyi Wu
Author(s):  
Jiajun Hu ◽  
Hongyan Xia ◽  
Xinguang Hou ◽  
Ting Yang ◽  
Kang Si ◽  
...  

BP powders with high thermal conductivity were synthesized by a facile molten salt method and used as thermal conductive fillers to prepare nanofibrillated cellulose composite film with higher thermal conductivity.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1051 ◽  
Author(s):  
Xiu Wang ◽  
Zhihuai Yu ◽  
Liang Jiao ◽  
Huiyang Bian ◽  
Weisheng Yang ◽  
...  

Hexagonal boron nitride (h-BN)-based heat-spreading materials have drawn considerable attention in electronic diaphragm and packaging fields because of their high thermal conductivity and desired electrical insulation properties. However, the traditional approach to fabricate thermally conductive composites usually suffers from low thermal conductivity, and cannot meet the requirement of thermal management. In this work, novel h-BN/cellulose-nano fiber (CNF) composite films with excellent thermal conductivity in through plane and electrical insulation properties are fabricated via an innovative process, i.e., the perfusion of h-BN into porous three dimensional (3D) CNF aerogel skeleton to form the h-BN thermally conductive pathways by filling the CNF aerogel voids. When at an h-BN loading of 9.51 vol %, the thermal conductivity of h-BN/CNF aerogel perfusion composite film is 1.488 W·m−1·K−1 at through plane, an increase by 260.3%. The volume resistivity is 3.83 × 1014 Ω·cm, superior to that of synthetic polymer materials (about 109~1013 Ω·cm). Therefore, the resulting h-BN/CNF film is very promising to replace the traditional synthetic polymer materials for a broad spectrum of applications, including the field of electronics.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Min Chao ◽  
Yanming Li ◽  
Guanglei Wu ◽  
Zhenjun Zhou ◽  
Luke Yan

Polyimide- (PI-) based nanocomposites containing the 4,4′-diaminodiphenyl ether- (ODA-) modified multiwalled carbon nanotube (MWCNT) filler were successfully prepared. The PI/MWCNTs-ODA composite films exhibit high thermal conductivity and excellent mechanical property. The optimal value of thermal conductivity of the PI/MWCNTs-ODA composite film is 0.4397 W/mK with 3 wt.% filler loading, increased by 221.89% in comparison with that of the pure PI film. In addition, the tensile strength of the PI/MWCNTs-ODA composite film is 141.48 MPa with 3 wt.% filler loading, increased by 20.74% in comparison with that of the pure PI film. This work develops a new strategy to achieve a good balance between the high thermal conductivity and excellent mechanical properties of polyimide composite films by using functionalized carbon nanotubes as an effective thermal conductive filler.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 317 ◽  
Author(s):  
Guang-jie Yuan ◽  
Jie-Fei Xie ◽  
Hao-Hao Li ◽  
Bo Shan ◽  
Xiao-Xin Zhang ◽  
...  

Thermally reduced graphene oxide/carbon nanotube (rGO/CNT) composite films were successfully prepared by a high-temperature annealing process. Their microstructure, thermal conductivity and mechanical properties were systematically studied at different annealing temperatures. As the annealing temperature increased, more oxygen-containing functional groups were removed from the composite film, and the percentage of graphene continuously increased. When the annealing temperature increased from 1100 to 1400 °C, the thermal conductivity of the composite film also continuously increased from 673.9 to 1052.1 W m−1 K−1. Additionally, the Young’s modulus was reduced by 63.6%, and the tensile strength was increased by 81.7%. In addition, the introduction of carbon nanotubes provided through-plane thermal conduction pathways for the composite films, which was beneficial for the improvement of their through-plane thermal conductivity. Furthermore, CNTs apparently improved the mechanical properties of rGO/CNT composite films. Compared with the rGO film, 1 wt% CNTs reduced the Young’s modulus by 93.3% and increased the tensile strength of the rGO/CNT composite film by 60.3%, which could greatly improve its flexibility. Therefore, the rGO/CNT composite films show great potential for application as thermal interface materials (TIMs) due to their high in-plane thermal conductivity and good mechanical properties.


2021 ◽  
Author(s):  
Meng Ma ◽  
Qindan Chu ◽  
Hao Lin ◽  
Lin Xu ◽  
Huiwen He ◽  
...  

Abstract Abstract: Nanofibrillated cellulose (NFC) film has received tremendous attention due to its excellent electrical insulation, which shows great application prospects in the field of electronic devices. However, the low efficient heat dissipation of NFC film largely limits its use in advanced applications. In this work, the rGO hybrid fillers loaded alumina (Al2O3) particles with different sizes were synthesized by different drying methods and then they were mixed with NFC to prepare a series of NFC-based composite films. The effect of Al2O3 particle sizes on the thermal conductivity of NFC-based composite films was studied. The results showed that the surface areas of l-Al2O3 particles were smaller than that of s-Al2O3 particles, resulting in the smaller interface thermal resistance and superior thermal conductivity of the film containing l-Al2O3 particles. The NFC-based composite films showed great potential for the applications in thermal management by adjusting the particle size of fillers.


Sign in / Sign up

Export Citation Format

Share Document