scholarly journals Pyrroloquinoline Quinone Attenuates Fat Accumulation in Obese Mice Fed with a High-Fat Diet, Daphnia magna Supplied with a High Amount of Food, and 3T3-L1 Adipocytes

Author(s):  
Nur Syafiqah Mohamad Ishak ◽  
Kazuto Ikemoto ◽  
Midori Kikuchi ◽  
Mariko Ogawa ◽  
Kazeno Akutagawa ◽  
...  
Obesity ◽  
2008 ◽  
Vol 16 (6) ◽  
pp. 1261-1269 ◽  
Author(s):  
C.S. Kim ◽  
S.C. Lee ◽  
Y.M. Kim ◽  
B.S. Kim ◽  
H.S. Choi ◽  
...  

BioFactors ◽  
2018 ◽  
Vol 44 (4) ◽  
pp. 336-347 ◽  
Author(s):  
Nanako Nihei ◽  
Hinako Okamoto ◽  
Takahiro Furune ◽  
Naoko Ikuta ◽  
Kengo Sasaki ◽  
...  

2015 ◽  
Vol 4 (1) ◽  
pp. 43
Author(s):  
Seo Young Jeon ◽  
Hae-Jin Park ◽  
Ji Young Park ◽  
Sung Ok Kim ◽  
Sae Kwon Bang ◽  
...  

PeerJ ◽  
2014 ◽  
Vol 2 ◽  
pp. e540 ◽  
Author(s):  
Yumiko Yoshizaki ◽  
Chihiro Kawasaki ◽  
Kai-Chun Cheng ◽  
Miharu Ushikai ◽  
Haruka Amitani ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3325
Author(s):  
Min-Cheol Kang ◽  
Hyo-Geun Lee ◽  
Hyun-Soo Kim ◽  
Kyung-Mo Song ◽  
Yong-Gi Chun ◽  
...  

Obesity is a metabolic disease characterized by an increased risk of type 2 diabetes, hypertension, and cardiovascular disease. We have previously reported that compounds isolated from brown alga, Sargassum thunbergii (ST; Sargassum thunbergii (Mertens ex Roth) Kuntze), inhibit adipogenesis in 3T3-L1 cells. However, the in vivo anti-obesity effects of these compounds have not been previously reported. Therefore, the objective of this study was to determine the effects of ST on weight loss, fat accumulation, as well as risk factors for type 2 diabetes and cardiovascular disease in high-fat diet (HFD)-induced obese mice. ST treatment significantly decreased body weight and fat accumulation in HFD-induced obese mice, while reducing insulin and factors related to cardiovascular diseases (triglyceride and total cholesterol) in serum. ST-induced downregulation of PPARγ in white adipose tissue, and upregulation of the thermogenic genes, UCP-1 and UCP-3, in brown adipose tissue was also observed. In addition, oral administration of ST reduced the occurrence of fatty liver, as well as the amount of white adipose tissue in HFD mice. Cumulatively, these results suggest that ST exerts anti-obesity effects and may serve as a potential anti-obesity therapeutic agent.


Author(s):  
Soo-Im Choi ◽  
SoHyeon You ◽  
SukJin Kim ◽  
GaYeong Won ◽  
Chang-Ho Kang ◽  
...  

Background: Excessive consumption of dietary fat is closely related to obesity, diabetes, insulin resistance, cardiovascular disease, hypertension, and non-alcoholic fatty liver disease. Recently, probiotics have been highly proposed as biotherapeutic to treat and prevent diseases. Previously, there are studies that demonstrated the beneficial effects of probiotics against metabolic disorders, including obesity and diabetes. Objective: We investigated the anti-obesity effect and mechanism of action of four human-derived lactic acid bacterial (LAB) strains (Lacticaseibacillus rhamnosus MG4502, Lactobacillus gasseri MG4524, Limosilactobacillus reuteri MG5149, and Weissella cibaria MG5285) in high-fat diet (HFD)-induced obese mice. Design: Obesity was induced in mice over 8 weeks, with a 60% HFD. The four human-derived LAB strains (2 × 108 CFU/mouse) were orally administered to male C57BL/6J mice once daily for 8 weeks. Body weight, liver and adipose tissue (AT) weights, glucose tolerance, and serum biochemistry profiles were determined. After collecting the tissues, histopathological and Western blot analyses were conducted. Results: Administration of these LAB strains resulted in decreased body weight, liver and AT weights, and glucose tolerance. Serum biochemistry profiles, including triglyceride (TG), total cholesterol, low-density lipoprotein cholesterol, and leptin, pro-inflammatory cytokines, improved. Hepatic steatosis and TG levels in liver tissue were significantly reduced. In addition, the size of adipocytes in epididymal tissue was significantly reduced. In epididymal tissues, Limosilactobacillus reuteri MG5149 and Weissella cibaria MG5285 groups showed a significantly reduced expression of lipogenic proteins, including peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, fatty acid synthase (FAS), and adipocyte-protein 2. In addition, sterol regulatory element-binding protein 1-c and its downstream protein FAS in the liver tissue were significantly decreased. These strains attenuated fat accumulation in the liver and AT by upregulating the phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase in HFD-fed mice. Conclusion: We suggest that L. reuteri MG5149 and W. cibaria MG5285 could be used as potential probiotic candidates to prevent obesity.


Sign in / Sign up

Export Citation Format

Share Document