scholarly journals Probing Metastable Domain Dynamics via Automated Experimentation in Piezoresponse Force Microscopy

ACS Nano ◽  
2021 ◽  
Author(s):  
Kyle P. Kelley ◽  
Yao Ren ◽  
Arvind Dasgupta ◽  
Pravin Kavle ◽  
Stephen Jesse ◽  
...  
2021 ◽  
Author(s):  
gregory salamo ◽  
Mohammad Zamani-Alavijeh ◽  
Timothy Morgan ◽  
Andrian Kuchuk

Abstract Piezoresponse force microscopy is used to study the velocity of the polarization domain wall in ultrathin ferroelectric barium titanate films grown on strontium titanate substrates by molecular beam epitaxy. The electric field due to the cone of the atomic force microscope tip is proposed as the dominant electric field of the tip in thin films for domain expansion at lateral distances greater than about one tip diameter away from the tip. The velocity of the domain wall under the applied electric field by the tip in barium titanate for thin films (less than 40 nm) followed an expanding process given by Merz’s law. The material constants in a fit of the data to Merz’s law for very thin films are reported as about 4.2 KV/cm for activation field, Ea, and 0.05 nm/s for limiting velocity, v∞. These material constants showed a dependence on the level of strain in the films but no fundamental dependence on thickness.


2015 ◽  
Vol 245 ◽  
pp. 217-222 ◽  
Author(s):  
Natalia V. Andreeva ◽  
Alexey V. Filimonov ◽  
Alexander F. Vakulenko ◽  
Sergey B. Vakhrushev

An experimental study of low temperature domain dynamics could provide information on a mechanism of domain wall motion at low temperatures in thin ferroelectric films. For this purpose we use a piezoresponse force microscopy (PFM) technique and investigate the 1800 ferroelectric domains growth in the temperature range 5 K – 295 K. Domains were created by applying a dc voltage pulses between an atomic force microscopy (AFM) tip and a bottom electrode of a thin epitaxial PbZr0.3Ti0.7O3 film. Two different types of tips were used, a semiconducting tip with dopant conductivity and a tip with metallic coating to clarify an influence of poling procedure on the domain dynamics. Created domains were then visualized and their in-plane sizes were measured with out-of-plane PFM. Dependences of lateral domain size on the duration and amplitude of dc voltage pulse were obtained. Received experimental dependences were then fitted with logarithmic function with good accuracy. This circumstance indicates on the thermally activated mechanism of domain growth and formation. Temperature dynamics of the 1800 ferroelectric domains growth does not depend on the AFM tip used in a poling procedure what allows us to conclude that the voltage transfer to the ferroelectric film does not significantly depend on the tip-film local contact properties.


2021 ◽  
Vol 543 ◽  
pp. 148808
Author(s):  
D.O. Alikin ◽  
L.V. Gimadeeva ◽  
A.V. Ankudinov ◽  
Q. Hu ◽  
V.Ya. Shur ◽  
...  

2013 ◽  
Vol 52 (40) ◽  
pp. 14328-14334 ◽  
Author(s):  
Juan Ramos-Cano ◽  
Mario Miki-Yoshida ◽  
André Marino Gonçalves ◽  
José Antônio Eiras ◽  
Jesús González-Hernández ◽  
...  

2007 ◽  
Vol 1034 ◽  
Author(s):  
V. A. Khomchenko ◽  
D. A. Kiselev ◽  
J. M. Vieira ◽  
Li Jian ◽  
A. M. L. Lopes ◽  
...  

AbstractInvestigation of crystal structure, magnetic and local ferroelectric properties of the diamagnetically-doped Bi1−xAxFeO3 (A= Ca, Sr, Pb, Ba; x= 0.2, 0.3) ceramic samples has been carried out. It has been shown that the solid solutions have a rhombohedrally distorted perovskite structure described by the space group R3c. Piezoresponse force microscopy data have revealed the existence of the spontaneous ferroelectric polarization in the samples at room temperature. Magnetization measurements have shown that the magnetic state of these compounds is determined by the ionic radius of the substituting elements. A-site substitution with the biggest ionic radius ions has been found to suppress the spiral spin structure of BiFeO3 and to result in the appearance of weak ferromagnetism. The magnetic properties have been discussed in terms of doping- induced changes in the magnetic anisotropy.


Sign in / Sign up

Export Citation Format

Share Document