Co-nucleus 1D/2D Heterostructures with Bi2S3 Nanowire and MoS2 Monolayer: One-Step Growth and Defect-Induced Formation Mechanism

ACS Nano ◽  
2016 ◽  
Vol 10 (9) ◽  
pp. 8938-8946 ◽  
Author(s):  
Yongtao Li ◽  
Le Huang ◽  
Bo Li ◽  
Xiaoting Wang ◽  
Ziqi Zhou ◽  
...  
Carbon ◽  
2021 ◽  
Author(s):  
Young Shik Cho ◽  
Hyunjin Kim ◽  
Minhoo Byeon ◽  
Yeonsu Jung ◽  
DongJoon Lee ◽  
...  
Keyword(s):  
One Step ◽  

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 296
Author(s):  
Mabruka Salem ◽  
Maria I. Pajunen ◽  
Jin Woo Jun ◽  
Mikael Skurnik

The Yersinia bacteriophages fPS-2, fPS-65, and fPS-90, isolated from pig stools, have long contractile tails and elongated heads, and they belong to genus Tequatroviruses in the order Caudovirales. The phages exhibited relatively wide host ranges among Yersinia pseudotuberculosis and related species. One-step growth curve experiments revealed that the phages have latent periods of 50–80 min with burst sizes of 44–65 virions per infected cell. The phage genomes consist of circularly permuted dsDNA of 169,060, 167,058, and 167,132 bp in size, respectively, with a G + C content 35.3%. The number of predicted genes range from 267 to 271. The phage genomes are 84–92% identical to each other and ca 85% identical to phage T4. The phage receptors were identified by whole genome sequencing of spontaneous phage-resistant mutants. The phage-resistant strains had mutations in the ompF, galU, hldD, or hldE genes. OmpF is a porin, and the other genes encode lipopolysaccharide (LPS) biosynthetic enzymes. The ompF, galU, and hldE mutants were successfully complemented in trans with respective wild-type genes. The host recognition was assigned to long tail fiber tip protein Gp38, analogous to that of T-even phages such as Salmonella phage S16, specifically to the distal β-helices connecting loops.


2021 ◽  
Vol 9 (1) ◽  
pp. 152
Author(s):  
Carly M. Davis ◽  
Jaclyn G. McCutcheon ◽  
Jonathan J. Dennis

Pseudomonas aeruginosa is a pernicious bacterial pathogen that is difficult to treat because of high levels of antibiotic resistance. A promising alternative treatment option for such bacteria is the application of bacteriophages; the correct combination of phages plus antibiotics can produce synergistic inhibitory effects. In this study, we describe morphological changes induced by sub-MIC levels of the antibiotic aztreonam lysine (AzLys) on P. aeruginosa PA01, which may in part explain the observed phage–antibiotic synergy (PAS). One-step growth curves for phage E79 showed increased adsorption rates, decreased infection latency, accelerated time to lysis and a minor reduction in burst size. Phage E79 plus AzLys PAS was also able to significantly reduce P. aeruginosa biofilm growth over 3-fold as compared to phage treatment alone. Sub-inhibitory AzLys-induced filamentation of P. aeruginosa cells resulted in loss of twitching motility and a reduction in swimming motility, likely due to a reduction in the number of polar Type IV pili and flagella, respectively, on the filamented cell surfaces. Phage phiKZ, which uses Type IV pili as a receptor, did not exhibit increased activity with AzLys at lower sub-inhibitory levels, but still produced phage–antibiotic synergistic killing with sub-inhibitory AzLys. A one-step growth curve indicates that phiKZ in the presence of AzLys also exhibits a decreased infection latency and moderately undergoes accelerated time to lysis. In contrast to prior PAS studies demonstrating that phages undergo delayed time to lysis with cell filamentation, these PAS results show that phages undergo accelerated time to lysis, which therefore suggests that PAS is dependent upon multiple factors, including the type of phages and antibiotics used, and the bacterial host being tested.


CrystEngComm ◽  
2015 ◽  
Vol 17 (24) ◽  
pp. 4495-4501 ◽  
Author(s):  
Bin Yang ◽  
Lei Yu ◽  
Qi Liu ◽  
Jingyuan Liu ◽  
Wanlu Yang ◽  
...  

We synthesized the mushroom-like Ni3S2 with step by step growth that is the thin film growing on the nanorod arrays with one-step hydrothermal process, which is a novel ways to fabricate the multidimensional hierarchical electrode materials for high performance energy storage.


RSC Advances ◽  
2017 ◽  
Vol 7 (53) ◽  
pp. 33526-33531 ◽  
Author(s):  
Shaoyu Zhang ◽  
Mengshi Yu ◽  
Liming Xu ◽  
Siwei Zhao ◽  
Jianfei Che ◽  
...  

Multilayer anodic TiO2 nanotubes with A-shaped sidewalls are first fabricated in HBF4-containing electrolyte by a one-step galvanostatic anodization.


2019 ◽  
Vol 115 (16) ◽  
pp. 163104 ◽  
Author(s):  
Zhiyan Jia ◽  
Jiyu Dong ◽  
Lixuan Liu ◽  
Jianyong Xiang ◽  
Anmin Nie ◽  
...  

Author(s):  
Huicheng Shi ◽  
John Yin

Since 2014, an Asian lineage of Zika virus has caused outbreaks, and it has been associated with neurological disorders in adults and congenital defects in newborns. The resulting threat of the Zika virus to human health has prompted the development of new vaccines, which have yet to be approved for human use. Vaccines based on the attenuated or chemically inactivated virus will require large-scale production of the intact virus to meet potential global demands. Intact viruses are produced by infecting cultures of susceptible cells, a dynamic process that spans from hours to days and has yet to be optimized. Here, we infected Vero cells adhesively cultured in well-plates with two Zika virus strains: a recently isolated strain from the Asian lineage, and a cell-culture-adapted strain from the African lineage. At different time points post-infection, virus particles in the supernatant were quantified; further, microscopy images were used to quantify cell density and the proportion of cells expressing viral protein. These measurements were performed across multiple replicate samples of one-step infections every four hours over 60 hours and for multi-step infections every four to 24 hours over 144 hours, generating a rich dataset. For each set of data, mathematical models were developed to estimate parameters associated with cell infection and virus production. The African-lineage strain was found to produce a 14-fold higher yield than the Asian-lineage strain in one-step growth and a 7-fold higher titer in multi-step growth, suggesting a benefit of cell-culture adaptation for developing a vaccine strain. We found that image-based measurements were critical for discriminating among different models, and different parameters for the two strains could account for the experimentally observed differences. An exponential-distributed delay model performed best in accounting for multi-step infection of the Asian strain, and it highlighted the significant sensitivity of virus titer to the rate of viral degradation, with implications for optimization of vaccine production. More broadly, this work highlights how image-based measurements can contribute to discrimination of virus-culture models for the optimal production of inactivated and attenuated whole-virus vaccines.


Sign in / Sign up

Export Citation Format

Share Document