scholarly journals Sustainable High Yield Route to Cellulose Nanocrystals from Bacterial Cellulose

2019 ◽  
Vol 7 (17) ◽  
pp. 14384-14388 ◽  
Author(s):  
Timo Pääkkönen ◽  
Panagiotis Spiliopoulos ◽  
Nonappa ◽  
Katri S. Kontturi ◽  
Paavo Penttilä ◽  
...  
2019 ◽  
Vol 19 (03) ◽  
pp. 1950015
Author(s):  
Ricardo Brandes ◽  
Leticia de Souza ◽  
Claudimir Carminatti ◽  
Derce Recouvreux

Bacterial cellulose nanocrystals are highly crystalline structures with nanoscopic scale dimensions that have received increased attention in the nanocomposites area. Its properties, such as large surface area, low density, mechanical strength and ease of modification, are attractive to the preparation many kinds of nanomaterials applied multifunctional in various fields. Besides, the cellulose nanocrystals are from abundant and renewable sources that are biodegradable. An altemative method is to obtain bacterial cellulose nanocrystal by enzymatic hydrolysis because it is, less expensive, it does not use chemicals and it requires much less energy. In this sense, the primary objective of this study was to produce bacterial cellulose using glycerol as a carbon source and isolate nanocrystals from bacterial cellulose using the enzymatic hydrolysis. This study also investigated the yield of nanocrystals depending on the weight of the bacterial cellulose hydrogel, keeping constant some enzymes. The study shows us that the enzymatic method has the best performance when using cellulose hydrogel 2[Formula: see text]g to 40[Formula: see text][Formula: see text]L cellulase enzyme (endoglucanase) and 1[Formula: see text]mL of citrate buffer. Also, it was observed that the yield of nanocrystals decrease with increasing time required for the hydrolysis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joaquin Caro-Astorga ◽  
Kenneth T. Walker ◽  
Natalia Herrera ◽  
Koon-Yang Lee ◽  
Tom Ellis

AbstractEngineered living materials (ELMs) based on bacterial cellulose (BC) offer a promising avenue for cheap-to-produce materials that can be programmed with genetically encoded functionalities. Here we explore how ELMs can be fabricated in a modular fashion from millimetre-scale biofilm spheroids grown from shaking cultures of Komagataeibacter rhaeticus. Here we define a reproducible protocol to produce BC spheroids with the high yield bacterial cellulose producer K. rhaeticus and demonstrate for the first time their potential for their use as building blocks to grow ELMs in 3D shapes. Using genetically engineered K. rhaeticus, we produce functionalized BC spheroids and use these to make and grow patterned BC-based ELMs that signal within a material and can sense and report on chemical inputs. We also investigate the use of BC spheroids as a method to regenerate damaged BC materials and as a way to fuse together smaller material sections of cellulose and synthetic materials into a larger piece. This work improves our understanding of BC spheroid formation and showcases their great potential for fabricating, patterning and repairing ELMs based on the promising biomaterial of bacterial cellulose.


2021 ◽  
Vol 97 ◽  
pp. 107161
Author(s):  
Jeongmin Nam ◽  
Yujin Hyun ◽  
Subin Oh ◽  
Jinseok Park ◽  
Hyoung-Joon Jin ◽  
...  

2021 ◽  
pp. 118946
Author(s):  
Junchai Zhao ◽  
Mengwei Deng ◽  
Shuaiyao Li ◽  
Zheng Guan ◽  
Yixuan Xia ◽  
...  

2021 ◽  
pp. 110939
Author(s):  
Carolina Buruaga-Ramiro ◽  
Noelia Fernández-Gándara ◽  
L. Verónica Cabañas-Romero ◽  
Susana V. Valenzuela ◽  
F.I. Javier Pastor ◽  
...  

The Analyst ◽  
2020 ◽  
Vol 145 (12) ◽  
pp. 4358-4368
Author(s):  
Seju Kang ◽  
Asifur Rahman ◽  
Ethan Boeding ◽  
Peter J. Vikesland

Bacterial cellulose nanocrystals (BCNCs) are biocompatible cellulose nanomaterials that can host guest nanoparticles to form hybrid nanocomposites with a wide range of applications.


2019 ◽  
Vol 7 (5) ◽  
pp. 4912-4923 ◽  
Author(s):  
Houyong Yu ◽  
Somia Yassin Hussain Abdalkarim ◽  
Heng Zhang ◽  
Chuang Wang ◽  
Kam Chiu Tam

2017 ◽  
Vol 72 ◽  
pp. 127-135 ◽  
Author(s):  
Huiqiong Yan ◽  
Xiuqiong Chen ◽  
Huangwang Song ◽  
Jiacheng Li ◽  
Yuhong Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document