A Logic NAND Gate for Controlling Gene Expression in a Circadian Rhythm in Cyanobacteria

2020 ◽  
Vol 9 (12) ◽  
pp. 3210-3216
Author(s):  
Mieun Lee ◽  
Han Min Woo
Cephalalgia ◽  
2017 ◽  
Vol 38 (3) ◽  
pp. 496-502 ◽  
Author(s):  
Carmen Fourier ◽  
Caroline Ran ◽  
Margret Zinnegger ◽  
Anne-Sofie Johansson ◽  
Christina Sjöstrand ◽  
...  

Background Cluster headache is characterized by recurrent unilateral headache attacks of severe intensity. One of the main features in a majority of patients is a striking rhythmicity of attacks. The CLOCK ( Circadian Locomotor Output Cycles Kaput) gene encodes a transcription factor that serves as a basic driving force for circadian rhythm in humans and is therefore particularly interesting as a candidate gene for cluster headache. Methods We performed an association study on a large Swedish cluster headache case-control sample (449 patients and 677 controls) screening for three single nucleotide polymorphisms (SNPs) in the CLOCK gene implicated in diurnal preference (rs1801260) or sleep duration (rs11932595 and rs12649507), respectively. We further wanted to investigate the effect of identified associated SNPs on CLOCK gene expression. Results We found a significant association with rs12649507 and cluster headache ( p = 0.0069) and this data was strengthened when stratifying for reported diurnal rhythmicity of attacks ( p = 0.0009). We investigated the effect of rs12649507 on CLOCK gene expression in human primary fibroblast cultures and identified a significant increase in CLOCK mRNA expression ( p = 0.0232). Conclusions Our results strengthen the hypothesis of the involvement of circadian rhythm in cluster headache.


1995 ◽  
Vol 309 (1) ◽  
pp. 271-277 ◽  
Author(s):  
A Castelló ◽  
A Gumá ◽  
L Sevilla ◽  
M Furriols ◽  
X Testar ◽  
...  

1. GLUT5 gene expression was studied in small intestine under a variety of conditions characterized by altered intestinal absorption of monosaccharides. 2. RNA-blotting studies showed that GLUT5 mRNA was abundantly expressed in rat and rabbit intestine and kidney, but it was not detected in heart or brown adipose tissue. GLUT5 mRNA levels were higher in the upper segments of the small intestine (duodenum and proximal jejunum) than in the lower segments (distal jejunum and ileum). 3. The intestinal expression of GLUT5 mRNA in rat proximal jejunum showed circadian rhythm. A 12-fold increase in GLUT5 mRNA levels was detected at the end of the light cycle and at the beginning of the dark cycle when compared with the early light period. In keeping with this, GLUT5 protein content in brush-border membranes was also increased at the beginning of the dark cycle compared with that in the light period. 4. In streptozotocin-induced diabetes an 80% increase in GLUT5 mRNA levels in mucosa from the proximal jejunum was detected under conditions in which enhanced intestinal absorption of monosaccharides has been reported. 5. The intestinal expression of GLUT5 mRNA showed regulation during perinatal development. Levels of GLUT5 mRNA were low during fetal life, increased progressively during the postnatal period and reached levels comparable with the adult state after weaning. Weaning on to a high-fat diet partially prevented the induction of GLUT5 gene expression. 6. Our results indicate that GLUT5 gene expression is tightly regulated in small intestine. Regulation involves maximal expression in the upper part of the small intestine, circadian rhythm, developmental regulation dependent on the fat and carbohydrate content in the diet at weaning and enhanced expression in streptozotocin-induced diabetes. Furthermore, changes observed in intestinal GLUT5 expression correlate with reported alterations in intestinal absorption of fructose. This suggests a regulatory role for GLUT5 in fructose uptake by absorptive enterocytes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sujeenthar Tharmalingam ◽  
Sandhya Khurana ◽  
Alyssa Murray ◽  
Jeremy Lamothe ◽  
T. C. Tai

Abstract Prenatal glucocorticoid exposure is associated with the development of hypertension in adults. We have previously demonstrated that antenatal dexamethosone (DEX) administration in Wistar-Kyoto dams results in offspring with increased blood pressure coupled with elevated plasma epinephrine levels. In order to elucidate the molecular mechanisms responsible for prenatal DEX-mediated programming of hypertension, a whole-transcriptome analysis was performed on DEX programmed WKY male adrenal glands using the Rat Gene 2.0 microarray. Differential gene expression (DEG) analysis of DEX-exposed offspring compared with saline-treated controls revealed 142 significant DEGs (109 upregulated and 33 downregulated genes). DEG pathway enrichment analysis demonstrated that genes involved in circadian rhythm signaling were most robustly dysregulated. RT-qPCR analysis confirmed the increased expression of circadian genes Bmal1 and Npas2, while Per2, Per3, Cry2 and Bhlhe41 were significantly downregulated. In contrast, gene expression profiling of Spontaneously Hypertensive (SHR) rats, a genetic model of hypertension, demonstrated decreased expression of Bmal1 and Npas2, while Per1, Per2, Per3, Cry1, Cry2, Bhlhe41 and Csnk1D were all upregulated compared to naïve WKY controls. Taken together, this study establishes that glucocorticoid programmed adrenals have impaired circadian signaling and that changes in adrenal circadian rhythm may be an underlying molecular mechanism responsible for the development of hypertension.


2008 ◽  
Vol 32 (2) ◽  
pp. 170-181 ◽  
Author(s):  
Jun Yan ◽  
Brian M. Barnes ◽  
Franziska Kohl ◽  
Thomas G. Marr

We performed a broadscale screening of differential gene expression using both high-throughput bead-array technology and real-time PCR assay in brown adipose tissue, liver, heart, hypothalamus, and skeletal muscle in hibernating arctic ground squirrels, comparing animals sampled after two durations of steady-state torpor, during two stages of spontaneous arousal episodes, and in animals after they ended hibernation. Significant seasonal and torpor-arousal cycle differences of gene expression were detected in genes involved in glycolysis, fatty acid metabolism, gluconeogenesis, amino acid metabolism, molecular transport, detoxification, cardiac contractility, circadian rhythm, cell growth and apoptosis, muscle dystrophy, and RNA and protein protection. We observed, for the first time, complex modulation of gene expression during multiple stages of torpor-arousal cycles. The mRNA levels of certain metabolic genes drop significantly during the transition from late torpor to early arousal, perhaps due to the rapid turnover of mRNA transcripts resulting from the translational demands during thermogenesis in early arousal, whereas the mRNA levels of genes related to circadian rhythm, cell growth, and apoptosis rise significantly in the early or late arousal phases during torpor-arousal cycle, suggesting the resumption of circadian rhythm and cell cycle during arousal.


2006 ◽  
Vol 20 (8) ◽  
pp. 1715-1727 ◽  
Author(s):  
Laurence Canaple ◽  
Juliette Rambaud ◽  
Ouria Dkhissi-Benyahya ◽  
Béatrice Rayet ◽  
Nguan Soon Tan ◽  
...  

Abstract Recent evidence has emerged that peroxisome proliferator-activated receptor α (PPARα), which is largely involved in lipid metabolism, can play an important role in connecting circadian biology and metabolism. In the present study, we investigated the mechanisms by which PPARα influences the pacemakers acting in the central clock located in the suprachiasmatic nucleus and in the peripheral oscillator of the liver. We demonstrate that PPARα plays a specific role in the peripheral circadian control because it is required to maintain the circadian rhythm of the master clock gene brain and muscle Arnt-like protein 1 (bmal1) in vivo. This regulation occurs via a direct binding of PPARα on a potential PPARα response element located in the bmal1 promoter. Reversely, BMAL1 is an upstream regulator of PPARα gene expression. We further demonstrate that fenofibrate induces circadian rhythm of clock gene expression in cell culture and up-regulates hepatic bmal1 in vivo. Together, these results provide evidence for an additional regulatory feedback loop involving BMAL1 and PPARα in peripheral clocks.


Sign in / Sign up

Export Citation Format

Share Document